Abstract:
A method including advancing a delivery device through a lumen of a blood vessel to a particular region in the blood vessel; and introducing a synthetic apolipoprotein A-1 (Apo A-I) mimetic peptide into a wall of the blood vessel at the particular region, wherein the peptide has a property that renders the peptide effective in reverse cholesterol transport. A composition including a synthetic apolipoprotein A-I (Apo A-I) mimetic peptide, or combination of an Apo A-I synthetic peptide and an Acyl CoA cholesterol: acyltransferase (ACAT) inhibitor in a form suitable for delivery into a blood vessel, the peptide including an amino acid sequence in an order reverse to an order of an endogenous Apo A-I related peptide. A composition including an apolipoprotein A-1 (Apo A-I) synthetic peptide in a form suitable for delivery into a blood vessel, the peptide including an amino acid backbone that has less amino acid residues relative to endogenous Apo A-I and a chimera of helix 1 and helix 9 of Apo A-I.
Abstract:
A method including advancing a delivery device through a lumen of a blood vessel to a particular region in the blood vessel; and introducing a composition including a sustained-release carrier and an apolipoprotein A-I (Apo A-I) synthetic mimetic peptide into a wall of the blood vessel at the particular region, wherein the peptide has a property that renders the peptide effective in reverse cholesterol transport. A composition including an apolipoprotein A-I (Apo A-I) synthetic peptide, or combination of an Apo A-I synthetic mimetic peptide and an Acyl CoA cholesterol: acyltransferase (ACAT) inhibitor in a form suitable for delivery into a blood vessel, the peptide including an amino acid sequence in an order reverse to an order of various Apo A-I mimetic peptides, or endogenous Apo A-I analogs, or a chimera of helix 1 and helix 9 of endogenous Apo A-I.
Abstract:
In general, in one aspect, the disclosures describes a method that includes receiving multiple ingress Internet Protocol packets, each of the multiple ingress Internet Protocol packets having an Internet Protocol header and a Transmission Control Protocol segment having a Transmission Control Protocol header and a Transmission Control Protocol payload, where the multiple packets belonging to a same Transmission Control Protocol/Internet Protocol flow. The method also includes preparing an Internet Protocol packet having a single Internet Protocol header and a single Transmission Control Protocol segment having a single Transmission Control Protocol header and a single payload formed by a combination of the Transmission Control Protocol segment payloads of the multiple Internet Protocol packets. The method further includes generating a signal that causes receive processing of the Internet Protocol packet.
Abstract:
Novel compounds having a fused bicyclic heteroaromatic ring system substituted with a thiazole ring are disclosed. The compounds inhibit growth of a variety of types of cancer cells, and are thus useful for treating cancer. Efficacy of these compounds is demonstrated with a system for monitoring cell growth/migration, which shows they are potent inhibitors of growth and/or migration of cancer cells. In addition, compounds of the invention were shown to stop growth of tumors in vivo, and to reduce the size of tumors in vivo. Compositions comprising these compounds, and methods to use these compounds and compositions for treatment of cancers, are disclosed.
Abstract:
In one embodiment, a cache memory includes entries each to store a ring level identifier, which may indicate a privilege level of information stored in the entry. This identifier may be used in performing read accesses to the cache memory. As an example, a logic coupled to the cache memory may filter an access to one or more ways of a selected set of the cache memory based at least in part on a current privilege level of a processor and the ring level identifier of the one or more ways. Other embodiments are described and claimed.
Abstract:
Embodiments of an apparatus for controlling cache occupancy rates are presented. In one embodiment, an apparatus comprises a controller and monitor logic. The monitor logic determines a monitored occupancy rate associated with a first program class. The first controller regulates a first allocation probability corresponding to the first program class, based at least on the difference between a requested occupancy rate and the first monitored occupancy rate.
Abstract:
In one embodiment, the present invention includes a method for associating a first priority indicator with first data stored in a first entry of a cache memory to indicate a priority level of the first data, and updating a count value associated with the first priority indicator. The count value may then be used in determining an appropriate cache line for eviction. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a page fault handler to create page table entries and TLB entries in response to a page fault, the page fault handler to determine if a page fault resulted from a stack access, to create a superpage table entry if the page fault did result from a stack access, and to create a TLB entry for the superpage. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a method for incrementing a counter value associated with a cache line if the cache line is inserted into a first level cache, and storing the cache line into a second level cache coupled to the first level cache or a third level cache coupled to the second level cache based on the counter value, after eviction from the first level cache. Other embodiments are described and claimed.
Abstract:
A method including advancing a delivery device through a lumen of a blood vessel to a particular region in the blood vessel; and introducing a composition including a sustained-release carrier and an apolipoprotein A-I (apo A-I) synthetic mimetic peptide into a wall of the blood vessel at the particular region or a perivascular site, wherein the peptide has a property that renders the peptide effective in reverse cholesterol transport. A composition including an apolipoprotein A-I (apo A-I) synthetic peptide, or combination of an apo A-I synthetic mimetic peptide and an Acyl CoA cholesterol: acyltransferase (ACAT) inhibitor in a form suitable for delivery into a blood vessel, the peptide including an amino acid sequence in an order reverse to an order of various apo A-I mimetic peptides, or endogenous apo A-I analogs, or a chimera of helix 1 and helix 9 of endogenous apo A-I.