Abstract:
A stented valve including a stent structure having a generally tubular body portion, an interior area, a longitudinal axis, an first end, an second end, and an outer surface; at least one outflow barb extending from the outer surface of the stent adjacent to the first end of the stent structure and toward the second end of the stent structure; at least one inflow barb extending from the outer surface of the stent adjacent to the second end of the stent structure and toward the first end of the stent structure; and a valve structure attached within the interior area of the stent structure.
Abstract:
A stent-graft includes a short tube graft and patch located inside of a primary graft. The patch forms a smooth and reliably sealed transition between the primary graft and the short tube graft. Accordingly, the disruption to fluid, e.g., blood, flowing through the lumen of the primary graft by the short tube graft is minimal. Further, the patch supports the inner end of the short tube graft. Thus, the patch, the short tube graft and the primary graft form a stable three-dimensional structure.
Abstract:
A method of using a delivery system includes advancing a stent to be located within an ostium of a vessel; advancing a basket actuation button of a handle to deploy a basket of the basket assembly; moving the basket into engagement with a parent vessel, the basket having a larger diameter than a diameter of the ostium; deploying the stent within an ostial lesion of the vessel; and contracting the basket.
Abstract:
The invention provides a method of providing an endovascular bypass. The method includes the steps of inserting an elastic needle carrying a guidewire adjacent an ostium via a catheter and extending the needle through a branch vessel wall. The method continues by extending the needle through the extravascular space and inserting the needle through a main vessel wall to create an opening. The needle is retracted, leaving the guidewire in place. A bypass stent graft is inserted along the guidewire to provide a pathway between the branch vessel and the main vessel, and the inserted bypass stent graft is expanded. The branch vessel is occluded between the ostium of the bypass stent graft and the main vessel, and a main stent graft is inserted in the main vessel proximate the opening in the main vessel wall.
Abstract:
The invention provides a method of providing an endovascular bypass. The method includes the steps of inserting an elastic needle carrying a guidewire adjacent an ostium via a catheter and extending the needle through a branch vessel wall. The method continues by extending the needle through the extravascular space and inserting the needle through a main vessel wall to create an opening. The needle is retracted, leaving the guidewire in place. A bypass stent graft is inserted along the guidewire to provide a pathway between the branch vessel and the main vessel, and the inserted bypass stent graft is expanded. The branch vessel is occluded between the ostium of the bypass stent graft and the main vessel, and a main stent graft is inserted in the main vessel proximate the opening in the main vessel wall.
Abstract:
An injector for injecting medicament in a patient. The injector includes a container comprising a fluid chamber containing a first volume of a medicament, and an injection conduit associated with the fluid chamber for defining a fluid pathway therefrom to inject the medicament from the fluid chamber through the injection conduit to an injection location. The injector also includes a firing mechanism associated with the fluid chamber for expelling the medicament from the fluid chamber through the injection conduit, and a volume-control mechanism operable to control a fraction of the first volume of medicament that is injected when the firing mechanism is actuated to inject the medicament.
Abstract:
A device for percutaneously repairing a heart valve of a patient including a self-expanding, stented prosthetic heart valve and a delivery system. The delivery system includes delivery sheath slidably receiving an inner shaft forming a coupling structure. A capsule of the delivery sheath includes a distal segment and a proximal segment. An outer diameter of the distal segment is greater than that of the proximal segment. An area moment of inertia of the distal segment can be greater than an area moment of inertia of the proximal segment. Regardless, an axial length of the distal segment is less than the axial length of the prosthesis. In a loaded state, the prosthesis engages the coupling structure and is compressively retained within the capsule. The capsule is unlikely to kink when traversing the patient's vasculature, such as when tracking around the aortic arch, promoting recapturing of the prosthesis.
Abstract:
A device for percutaneously repairing a heart valve of a patient including a self-expanding, stented prosthetic heart valve and a delivery system. The delivery system includes delivery sheath slidably receiving an inner shaft forming a coupling structure. A capsule of the delivery sheath includes a distal segment and a proximal segment. An outer diameter of the distal segment is greater than that of the proximal segment. An area moment of inertia of the distal segment can be greater than an area moment of inertia of the proximal segment. Regardless, an axial length of the distal segment is less than the axial length of the prosthesis. In a loaded state, the prosthesis engages the coupling structure and is compressively retained within the capsule. The capsule is unlikely to kink when traversing the patient's vasculature, such as when tracking around the aortic arch, promoting recapturing of the prosthesis.
Abstract:
A device for percutaneously repairing a heart valve of a patient including a self-expanding, stented prosthetic heart valve and a delivery system. The delivery system includes delivery sheath slidably receiving an inner shaft forming a coupling structure. A capsule of the delivery sheath includes a distal segment and a proximal segment. An outer diameter of the distal segment is greater than that of the proximal segment. An area moment of inertia of the distal segment can be greater than an area moment of inertia of the proximal segment. Regardless, an axial length of the distal segment is less than the axial length of the prosthesis. In a loaded state, the prosthesis engages the coupling structure and is compressively retained within the capsule. The capsule is unlikely to kink when traversing the patient's vasculature, such as when tracking around the aortic arch, promoting recapturing of the prosthesis.
Abstract:
A medicament dispensing mechanism is disclosed that is configured to eject successive doses of the medicament from a medicament chamber. An embodiment of the dispensing mechanism includes a housing and a plunger rod configured for ejecting the doses of medicament from the chamber. The dispensing mechanism further includes an actuation mechanism that comprises a trigger associated with the housing and having a ready and a fired position with respect thereto. The trigger is configured for manipulation by a user for successive movement in a generally axial dosing motion from the ready position to the fired position in which the trigger is associated with the plunger rod to cause the plunger rod to eject one of the doses of a predetermined volume and a resetting motion from the fired position to the ready position that comprises axial rotation, wherein the trigger is uncoupled from the plunger rod during the resetting motion.