Abstract:
The invention relates to a method for controlling a drive system (1) and to a drive system (1) having a drive machine (2) which is connected to a first element (6) of an epicyclic gearing (5). The drive system (1) also comprises a shift gearing (4) which is connected to a third element (9) of the epicyclic gearing. Also provided is a hydrostatic machine (3) which is connected to a second element (7) of the epicyclic gearing (5). The hydrostatic machine (3) is set to a negligible displacement volume (VhM) A gear stage of the shift gearing (4) is engaged. The displacement volume (VhM) of the hydrostatic machine (3) is increased and the hydrostatic machine (3) charges a hydraulic accumulator (26). After moment equilibrium is reached in the epicyclic gearing (5), the displacement volume (VhM) of the hydrostatic machine (3) is supplied to the epicyclic gearing (5). In the event of synchronization of the epicyclic gearing (5), a clutch (12) for blocking the epicyclic gearing (5) is closed. The hydraulic accumulator (26) is discharged further via the hydrostatic machine (3) and adds a torque generated by the drive machine (2).
Abstract:
The invention relates to a drive (1) having an energy recovery function. The drive having an energy recovery function comprises a hydrostatic piston machine (9) and at least one storage element (13) which is connected to said hydrostatic piston machine. Said hydrostatic piston machine (9) and the at least one storage element (13) are connected together by means of a storage line. Said storage line is divided into a rust storage line section (11) and into a second storage line section (12) by a throttle value unit (15). Said throttle valve unit (15) comprises a control pressure valve unit (16) and a built-in valve (17). The control pressure valve unit (16) produces a control pressure which acts upon the built-in valve (17).
Abstract:
An apparatus for energy recovery is provided. The apparatus comprises a hydrostatic machine and at least one hydraulic storage component. The hydraulic storage component is connected to the hydrostatic machine via a working line. A valve device is provided for influencing the volumetric flow in the working line between the hydraulic storage component and the hydrostatic machine. The valve device comprises a brake pressure regulating valve unit with a valve and a pilot valve unit which acts on the valve with a control pressure. The invention also relates to a method for controlling the apparatus for energy recovery. In order to store released energy, a required braking torque is determined by a control electronics system. The volume from the hydrostatic piston machine into the working line is increased and the pilot valve is actuated by the control electronics system such that the valve is moved towards its open position.
Abstract:
The method of producing monocrystalline or multicrystalline blanks, especially silicon blanks, by using a vertical-gradient-freeze method, includes providing a crucible with a rectangular or square-shaped cross section and a heating jacket disposed around the crucible, which has a number of flat heating elements with a meandering course disposed on side faces of the crucible. The heating jacket generates an inhomogeneous temperature profile corresponding to a temperature gradient in the center of the crucible. The flat heating elements preferably comprise parallel heating webs, whose heat output is set by varying the conductor cross section. To avoid local overheating in corner areas of the crucible, constrictions of the cross section are provided at inversion zones of the meandering courses of the webs. The flat heating elements can be formed from a plurality of interconnected individual segments.
Abstract:
The invention relates to an energy recovery drive. Said drive comprises a first driving shaft (3) and a second driving shaft (4). The second driving shaft (4) is connected to a hydrostatic piston engine (5). Said hydrostatic piston engine (5) is connected to a first accumulator (11) and a second accumulator (12) for accumulating pressure energy. The first drive shaft (3) and the second drive shaft (4) can be connected to each other via a gear train (6), said gear train (6) comprising at least one first gearwheel (7) and a second gearwheel (8) which is configured as a sliding gearwheel.
Abstract:
The method provides CaF2 single crystals with low scattering, small refractive index differences and few small angle grain boundaries, which can be tempered at elevated temperatures. In the method a CaF2 starting material is heat-treated for at least five hours at temperatures between 1000° C. and 1250° C. and then sublimed at a sublimation temperature of at least 1100° C. in a vacuum of at most 5*10−4 mbar to form a vapor. The vapor is condensed at a condensation temperature of at least 500° C., which is at least 20° C. below the sublimitation temperature, to form a condensate. Then a melt formed from the condensate is cooled in a controlled manner to obtain the single crystal, which is subsequently tempered. The method is preferably performed with a CaF2 starting material including waste material and cuttings from previously used melts.
Abstract:
The invention relates to a device and a method for the production of monocrystalline or multicrystalline materials using the vertical-gradient-freeze method, in particular silicon for applications in photovoltaics. According to the invention a low amount of wastage is achieved in that the cross section of the crucible is polygonal, in particular rectangular or square-shaped. Disposed around the circumference of the crucible there is a flat or planar heating element, in particular a jacket heater, which generates an inhomogeneous temperature profile. This corresponds to the temperature gradient formed in the centre of the crucible. The heat output of the flat heating element decreases going from the top end to the bottom end of the crucible. The flat heating element comprises a plurality of parallel heating webs, extending in a vertical or horizontal meandering course. The heat output from the webs is set by varying the conductor cross section. To avoid local overheating in corner areas of the crucible, constrictions of the cross section are provided at inversion zones of the meandering courses of the webs. The flat heating element can be formed from a plurality of interconnected individual segments.
Abstract:
A method for producing high-purity, large-volume monocrystals that are especially radiation-resistant and have low intrinsic birefringence. From a melt of crystalline raw material, with controlled cooling and solidification, a crystal is generated. As the crystalline raw material, shards and/or waste from already-grown crystals is used, and the re-used raw material 1) upon visual observation in daylight has no color; and 2) upon illumination with a white-light lamp in a darkroom a) has no or at maximum a just barely perceivable reddish and/or bluish fluorescence; and b) has no or at maximum a just barely perceivable diffuse scattering; and c) has no or only slight discrete scattering of at maximum two visually perceivable scattering centers per dm3. In this way, crystals can be obtained which after tempering have a BSDF value of
Abstract:
This invention involves the field of tactile control of electronic devices using a sensor that transduces both air pressure and device positional orientation into a set of digitally encoded commands. The invention involves using as input the physical action taken on a musical instrument and generating control information using that input.
Abstract:
A method for assembling motor vehicles in which a drive train, chassis and floor module are pre-assembled and then connected to a shell of the motor vehicle. The floor module is pre-assembled in a first pre-assembly process and the drive train and the chassis are pre-assembled in a second pre-assembly process. The floor module, the drive train and the chassis are combined and then connected to the shell of the motor vehicle.