Abstract:
A circuit for processing a clock signal including first and second clock edges of different polarities, the circuit including an inverter for inverting a first clock edge to generate an inverted first clock edge and inverting a second clock edge to generate an inverted second clock edge; a first pass gate for receiving the inverted clock edge and outputting a first trigger signal of a first polarity; and a second pass gate for receiving the second clock edge and outputting a second trigger signal of the first polarity, wherein the second pass gate is controlled to open responsive to the inverted second clock edge; whereby the delay between the first clock edge and the first trigger signal is substantially equal to the delay between the second clock edge and second trigger signal.
Abstract:
A computer (“patch analysis computer”) retrieves from a website, metadata describing one or more patch files to be used to change software in one or more computers (“target computers”). Prior to installation of the patch files in a target computer, the patch analysis computer performs analysis on the patch files and on the target computer and on application of the patch files to the target computer. The analysis is based on the retrieved metadata and based on configuration data of the target computer. Subsequent to performing the analysis, the management computer displays a report resulting from the analysis including one or more operations to fix issues found during analysis, and receives input from a human on specific patch files and operations. In response to receipt of human input, the patch analysis computer performs operations approved by the human and applies the patch files to the target computer.
Abstract:
Methods and apparatus for supporting emergency communications are provided. A method for a Radio Access Network (RAN) serving at least one Core Network (CN) to support emergency communications of a User Equipment (UE) includes determining whether at least one CN in a shared network environment supports emergency communications, if it is determined that the at least one CN in the shared network environment supports emergency communications, transmitting an emergency call support indication to the UE indicating that emergency communications are supported, receiving a request for emergency communications from the UE, and routing the request for emergency communications to another CN that supports emergency communications in the shared network environment, if a given CN does not support emergency communications.
Abstract:
A combined matching and harmonic rejection circuit with increased harmonic rejection provided by a split resonance for one or more of the capacitive or inductive elements of the circuit. At a fundamental frequency, the circuit comprises an inductive series arm with capacitive shunt arms. The capacitance of a shunt arm may be provided by two or more parallel paths, each having a capacitor and an inductor in series so that, in addition to providing the effective capacitance necessary for impedance matching at the fundamental frequency, two separate harmonics represented by the series resonances of the parallel paths are rejected. In this manner, an extra null in the circuit's stop-band may be achieved using the same number of shunt elements necessary to achieve impedance matching at the fundamental frequency.
Abstract:
A routing system utilizes a layer 2 switch interconnecting several routers to intelligently forward multicast packets throughout an internet exchange carrying multicast content. The layer 2 switch performs protocol snooping to extract a lookup key that is based on network layer protocol information. The lookup key is uniquely formulated to support either shared or explicit source distribution trees. The lookup key is used to query a forwarding memory that returns an outgoing port index. The outgoing port index points to one or more outgoing ports that are eligible to receive the multicast packet. The outgoing ports are also connected to the neighboring device(s) that are designated to receive the multicast packet. The routing system also supports real time maintenance and updating of the forwarding memory based on the periodic exchange of control messages. The routing system is configured to support PIM routers operating in PIM SM or PIM SSM modes. However, the routing system can also support other multicast protocols and/or standards.
Abstract:
A switch matrix including a plurality of microstrip pairs arranged to form a grid and switches to couple the microstrip pairs where they cross. Each microstrip pair includes a first microstrip and a second microstrip for passing signals. The signals on the first and second microstrips are such that the electromagnetic forces produced by each one are canceled out by the other. By canceling out the electromagnetic forces, undesirable coupling between microstrips that cross and between microstrips and the substrate are minimized, thereby allowing inexpensive substrates such as silicon to be used.
Abstract:
In an embodiment, a termination for a transmission line (or high frequency circuit) includes a matching circuit which provides a matching impedance for the transmission line and an electrical connection between the two, e.g., a bond wire. The electrical connection has a reactance matrix, which, when combined with the impedance provided by the matching circuit, provides a resultant termination resistance.
Abstract:
A balanced line switching apparatus that provides high isolation at an expense of a marginal increase of loss. Practical implementation can give as much as 40 dB isolation in a single stage.
Abstract:
A surface-mountable millimeter-wave waveguide filter is constructed using irises in a rectangular waveguide formed in a dielectric material such as glass. The filter structure is surface-mountable, has a single dielectric layer, and can be manufactured using a suitable monolithic microwave integrated circuit (MMIC) process. The filter has potential applications in millimeter-wave systems such as Local Multipoint Distribution System (LMDS) and Autonomous Cruise Control (ACC) radar for automobiles.
Abstract:
A dielectric transmission line bend structure includes an electrically conductive strip that forms a bend (e.g., a right angle bend). The inner edge of the bend includes a plurality of curved and/or straight line segments that result in the inner edge extending along a circuitous path in order to thereby reduce transmission line loss. A T-type junction includes a first or left side inner edge bending to the left and a second or right side inner edge bending to the right, with both inner edges including segments that result in greater inner edge lengths in order to increase current path lengths along the inner edges and thereby help reduce transmission line loss. A method of designing a transmission line bend structure includes the step of providing a preliminary bend structure design having an electrically conductive strip with at least one inner edge extending along a circuitous path between first and second inner edge end points on the strip. The method proceeds by producing simulation information indicative of transmission line loss characteristics of the preliminary bend structure design, and adjusting the length of the circuitous path according to the simulation information in order to produce an final design having improved transmission line loss characteristics.