Abstract:
A micro electro mechanical device includes an inner frame provided with a movable part and an outer frame provided in a circumference of the inner frame. The outer frame has a fixing part fixed by a joining material. A first torsion bar is provided between the outer frame and the inner frame so as to swingablly support the inner frame on the outer frame. A first opening is formed in the outer frame in a vicinity of the first torsion bar. The first opening is positioned between the fixing part of the outer frame and the first torsion bar.
Abstract:
A micro oscillating element is formed integrally from a material substrate made up of a first conductive layer, a second conductive layer and an insulating layer disposed between the first conductive layer and the second conductive layer. This oscillating element includes an oscillation section, an oscillation section supporting frame, and a torsional joining section. The oscillation section includes a movable functional section. The torsional joining section joins the oscillation section and the frame, and also defines an oscillation axis for oscillating action of the oscillation section. The movable functional section is a part formed in the first conductive layer, while the frame is a part formed in the second conductive layer.
Abstract:
A micromirror unit is provided which includes a frame, a mirror forming base upon which a mirror surface is formed, and a torsion connector which includes a first end connected to the mirror forming base and a second end connected to the frame. The torsion connector defines a rotation axis about which the mirror forming base is rotated relative to the frame. The torsion connector has a width measured in a direction which is parallel to the mirror surface and perpendicular to the rotation axis. The width of the torsion connector is relatively great at the first end. The width becomes gradually smaller from the first end toward the second end.
Abstract:
A microstructure device is made by processing a material substrate consisting of e.g. a first process layer, a second process layer and a middle layer arranged between the first and the second process layers. The microstructure device includes a first structural part and a second structural part that has a portion facing the first structural part via a gap. The first and the second structural parts are connected to each other by a connecting part extending across the gap. This connecting part is formed in the first process layer to be in contact with the middle layer. The microstructure device also includes a protective part extending from the first structural part toward the second structural part or vice versa. The protective part is formed in the first or second process layer to be in contact with the middle layer.
Abstract:
A micro-oscillation element facilitates adjusting the natural frequency relevant to the oscillating motion of the oscillating portion. The micro-oscillation element includes, for example, an oscillating portion, a frame, and a link portion that connects the oscillating portion and the frame. The link portion defines the oscillation axial center of oscillating motion of the oscillating portion with respect to the frame. The oscillating portion includes a main oscillating body, and a weight portion attached to the main oscillating body. The weight portion is movable in a direction intersecting the oscillation axial center.
Abstract:
The micro-actuation element (X1) includes a movable unit (111), a frame (112) and a coupler (113) for connecting these, where the unit, the frame and the coupler are integrally formed in a material substrate having a multi-layer structure that consists of electroconductive layers (110a-110c), such as a core conduction layer (110b), and insulation layers (110d, 110e) intervening between the electroconductive layers (110a-110c). The movable unit (111) includes a first structure originating in the core conduction layer (110b). The frame (112) includes a second structure originating in the core conduction layer (110b). The coupler (113) includes a plurality of electrically separated torsion bars (113a, 113b) that originate in the core conduction layer (110b) and are connected continuously to the first structure and the second structure.
Abstract:
A micro-oscillation element includes a movable main section, a first frame and a second frame, and a first connecting section that connects the movable main section and the first frame and defines a first axis of rotation for a first rotational operation of the movable main section with respect to the first frame. The element further includes a second connecting section that connects the first frame and the second frame and defines a second axis of rotation for a second rotational operation of the first frame and the movable main section with respect to the second frame. A first drive mechanism is provided for generating a driving force for the first rotational operation. A second drive mechanism is provided for generating a driving force for the second rotational operation. The first axis of rotation and the second axis of rotation are not orthogonal.
Abstract:
A micro mirror unit includes a moving part carrying a mirror portion, a frame and torsion bars connecting the moving part to the frame. The moving part, the frame and the torsion bars are formed integral from a material substrate. The frame includes a portion thicker than the moving part.
Abstract:
A micromirror unit is provided which includes a frame, a mirror forming base upon which a mirror surface is formed, and a torsion connector which includes a first end connected to the mirror forming base and a second end connected to the frame. The torsion connector defines a rotation axis about which the mirror forming base is rotated relative to the frame. The torsion connector has a width measured in a direction which is parallel to the mirror surface and perpendicular to the rotation axis. The width of the torsion connector is relatively great at the first end. The width becomes gradually smaller from the first end toward the second end.
Abstract:
A method is provided for making a micromirror unit which includes a frame, a mirror forming base, and bridges connecting the frame to the mirror forming base. The method includes the following steps. First, a first mask pattern is formed on a substrate for masking portions of the substrate which are processed into the frame and the mirror forming base. Then, a second mask pattern is formed on the substrate for masking portions of the substrate which are processed into the bridges. Then, the substrate is subjected to a first etching process with the first and the second mask patterns present as masking means. Then, the second mask pattern is removed selectively. Then, the substrate is subjected to a second etching process with the first mask pattern present as masking means. Finally, the first mask pattern is removed.