Abstract:
A process for removing high boilers from crude caprolactam which comprises high boilers, caprolactam and in some cases low boilers, and which has been obtained by a) reacting 6-aminocapronitrile with water to give a reaction mixture b) removing ammonia and unconverted water from the reaction mixture to obtain crude caprolactam, which comprises c) feeding the crude caprolactam to a distillation apparatus to obtain a first substream via the top as a product and a second substream via the bottom, by setting the pressure in the distillation in such a way that the bottom temperature does not go below 170° C., and adjusting the second substream in such a way that the caprolactam content of the second substream is not less than 10% by weight, based on the entire second substream.
Abstract:
A catalyst for the hydrogenation of C4-dicarboxylic acids and/or their derivatives, preferably maleic anhydride, in the gas phase comprises from 5 to 100% by weight, preferably from 40 to 90% by weight, of copper oxide and from 0 to 95% by weight, preferably from 10 to 60% by weight, of one or more metals or compounds thereof selected from the group consisting of Al, Si, Zn, Pd, La, Ce, the elements of groups III A to VIII A and groups I A and II A as active composition applied in the form of a thin layer to an inert support material.
Abstract:
In a process for preparing alcohols by catalytic hydrogenation of carbonyl compounds over a catalyst comprising rhenium on activated carbon, the catalyst used comprises rhenium (calculated as metal) in a weight ratio to the activated carbon of from 0.0001 to 0.5, platinum (calculated as metal) in a weight ratio to the activated carbon of from 0.0001 to 0.5 and, if appropriate, at least one further metal selected from among Zn, Cu, Ag, Au, Ni, Fe, Ru, Mn, Cr, Mo, W and V in a weight ratio to the activated carbon of from 0 to 0.25, and the activated carbon has been nonoxidatively pretreated. It is also possible to prepare ethers and lactones if the hydrogen pressure is not more than 25 bar. In this case, the activated carbon in the catalyst may also have been nonoxidatively pretreated.
Abstract:
The present invention provides a process for hydrogenating carbonyl compounds, in particular C4-dicarboxylic acids to mixtures of tetrahydrofuran and gamma-butyrolactone, over supported rhenium catalysts, wherein rhenium and at least one further metal of groups VIII or Ib of the Periodic Table of the Elements, in particular ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt), copper (Cu), silver (Ag) or cobalt (Co), is applied to the support in the form of at least one bimetallic precursor compound, and also to these catalysts.
Abstract:
The present invention provides a process for preparing 1,6-hexanediol having a purity of ≧99.5% by weight by catalytically dimerizing acrylic esters and catalytically hydrogenating the hexenedioic diesters obtained in this way to 1,6-hexanediol by a) dimerizing C1- to C8-acrylic esters in the presence of at least one rhodium compound to give mixtures of predominantly 2- and 3-hexenedioic diesters, b) hydrogenating the resulting dimerizing effluent in the presence of chromium-free catalysts comprising predominantly copper as the hydrogenation component and c) purifying the crude 1,6-hexanediol obtained in this way by fractional distillation.
Abstract:
A process for distillative removal of ammonia from solutions (I) which include a lactam and ammonia comprises effecting said removal in a distillation apparatus (a) at an absolute pressure of less than 10 bar.
Abstract:
The present invention relates to a process for the gas-phase hydrogenation of C4-dicarboxylic acids and/or their derivatives over a catalyst based on copper oxide to give substituted or unsubstituted &ggr;-butyrolactone and/or tetrahydrofuran, which comprises, which a first reaction zone in which the C4-dicarboxylic acid and/or its derivatives is/are reacted to give a mixture comprising a substituted or unsubstituted &ggr;-butyrolactone as main product and a subsequent second reaction zone in which the substituted or unsubstituted &ggr;-butyrolactone present in the mixture from the first hydrogenation step is reacted at a temperature lower than the temperature in the first hydrogenation step to give substituted or unsubstituted tetrahydrofuran.
Abstract:
A process for the preparation of caprolactam is provided, wherein a) a mixture (I) containing 6-aminocapronitrile and water is reacted in the gas phase, in the presence of a catalyst, to give a mixture (II) containing caprolactam, ammonia, water, high-boiling components and low-boiling components, b) ammonia is then removed from the mixture (II) to give a mixture (III) containing caprolactam, water, high-boiling components and low-boiling components, c) water is then removed from the mixture (III) to give a mixture (IV) containing caprolactam, high-boiling components and low-boiling components, and d) a solid (V) containing caprolactam is then obtained from the mixture (IV) by crystallization, the proportion by weight of caprolactam in the solid (V) being greater than in the mixture (IV).
Abstract:
A process for the preparation of caprolactam is provided, wherein a) a mixture (I) containing 6-aminocapronitrile and water is reacted in the liquid phase, in the presence of a catalyst, to give a mixture (II) containing caprolactam, ammonia, water, high-boiling components and low-boiling components, b) ammonia is then removed from the mixture (II) to give a mixture (III) containing caprolactam, water, high-boiling components and low-boiling components, c) water is then removed from the mixture (III) to give a mixture (IV) containing caprolactam, high-boiling components and low-boiling components, and d) a solid (V) containing caprolactam is then obtained from the mixture (IV) by crystallization, the proportion by weight of caprolactam in the solid (V) being greater than in the mixture (IV).
Abstract:
A process for the preparation of 1,6-hexanediol and 6-hydroxycaproic acid or esters thereof by catalytic hydrogenation of adipic acid, adipic acid monoesters or adipic acid diesters or streams of starting material which contain adipic acid or esters thereof as essential constituents, in which the bottom product obtained in the distillation of the hydrogenation product, following removal of the hexanediol and hydroxycaproic acid or esters thereof, and essentially comprises oligomeric esters of 6-hydroxycaproic acid, is recycled to the hydrogenation, and the resulting mixture of starting material and recycle stream is reacted at from 100 to 300°C., at from 10 to 300 bar in the liquid phase and at a molar ratio of carboxyl groups to be hydrogenated to hydrogen in the reactor of from 1:5 to 1:100 on hydrogenation catalysts is described.