Abstract:
An organic light emitting diode display includes a first electrode and a second electrode, an organic emissive layer disposed between the first electrode and the second electrode, a first selective reflection layer disposed to receive light from the organic emissive layer, and a third transparent electrode, the first selective reflection layer being between the third transparent electrode and the organic emissive layer.
Abstract:
A display device includes a display panel configured to display an image in an upward direction and a reflective panel on the display panel, the reflective panel configured to selectively transmit or reflect light with respect to an area corresponding to the image.
Abstract:
An organic light emitting diode (OLED) display includes a substrate and an organic light emitting element on the substrate and including a first electrode, a plurality of organic emission layers on the first electrode and including at least one P-type impurity doped organic emission layer, and a second electrode on the plurality of organic emission layers.
Abstract:
A reflective type complex display device comprises: a lower substrate; an organic light-emitting layer formed on a top surface of the lower substrate for emitting light when supplied with current; a sealing layer covering the organic light-emitting layer so as to seal the organic light-emitting layer from the outside; an upper substrate formed above the sealing layer with a gap therebetween; liquid crystals injected between the upper substrate and the sealing layer; a transparent electrode formed on a surface of the upper substrate; and a polarizer formed on another surface of the upper substrate. The transparent electrode comprises a first electrode and a second electrode which are alternately arranged, and which drive the liquid crystals by generating an electric field in response to different voltages applied thereto.
Abstract:
An organic light-emitting device including: a substrate; a first electrode disposed on the substrate; a second electrode disposed on the substrate and comprising silver (Ag); an emission layer between the first electrode and the second electrode; an electron injection layer between the emission layer and the second electrode and comprising a mixture of an alkali metal-containing compound and a first metal; and a capping layer disposed on the second electrode.
Abstract:
An organic light emitting device and a method of manufacturing the same, the device including a substrate; a thin film transistor on the substrate, the thin film transistor including source and drain electrodes, an oxide semiconductor layer, a gate electrode, and a gate insulating layer that insulates the gate electrode from the source and drain electrodes; a first insulating layer on the thin film transistor; a cathode on the first insulating layer, the cathode being connected to one of the source and drain electrodes of the thin film transistor; a first layer on the cathode, the first layer including a first material, the first material including at least one of metal, metal sulfide, metal oxide, and metal nitride; an organic layer on the first layer; and an anode on the organic layer.
Abstract:
An organic light-emitting device, including a first electrode, the first electrode having a smaller absolute value of a work function energy level than an absolute value of a work function energy level of ITO, a second electrode facing the first electrode, and an organic layer between the first electrode and the second electrode.
Abstract:
A heterocyclic compound represented by Formula 1 or Formula 2 below, and an organic light-emitting device including the heterocyclic compound. The organic light-emitting device may include an organic layer containing the heterocyclic compound, and thus may have a low driving voltage, a high-emission efficiency, and long lifespan characteristics. wherein R1 to R12, Ar1, Ar2, A, B, a, and b are defined as in the specification.
Abstract:
An organic light-emitting device including a substrate, an anode layer on the substrate, the anode layer including WOxNy (2.2≦x≦2.6 and 0.22≦y≦0.26), an emission structure layer on the anode layer, and a cathode layer on the emission structure layer.
Abstract:
A heterocyclic compound, an organic light-emitting diode, and a flat display device, the heterocyclic compound being represented by Formula 1, below: