Abstract:
An apparatus for and method of estimating a motion vector for a video image block are provided. The apparatus includes an error calculation unit calculating a motion estimation error for a predetermined prediction motion vector of the image block, an information extraction unit extracting geometric information regarding the image block, an update motion vector generation unit generating an update motion vector based on the motion estimation error calculated by the error calculation unit and the geometric information extracted by the information extraction unit, and an addition unit adding the prediction motion vector to the generated update motion vector.
Abstract:
A de-interlacing apparatus with a noise reduction/removal device. The noise reduction/removal device can include a motion prediction unit that predicts motion vectors between an image one period ahead of a previous image and a current image with respect to individual images which are sequentially inputted; a motion checking unit that applies the motion vectors predicted by the motion prediction unit to the image one period ahead of the previous image and two different images ahead of the current image in time, and checks whether the motion vectors are precise motion vectors; a motion compensation unit that compensates for motions in use of the motion vectors checked for preciseness thereof by the motion checking unit; and a noise removal unit that removes noise on images using the motion-compensated images by the motion compensation unit and the inputted images. Accordingly, the noise reduction/removal device can reduce or remove noise through simple procedures on noise-bearing images.
Abstract:
A method of improving picture quality in a composite video burst signal includes dividing the composite video burst signal into a plurality of frequency bands using a low pass filter and a high pass filter, performing wavelet packet filtering of frequency bands including a chrominance signal having energy higher than a specified threshold among the plurality of frequency bands, and performing Wiener filtering of frequency bands including a chrominance signal having energy lower than a specified threshold.
Abstract:
An apparatus for detecting whether an image signal is in a film mode, includes a first field buffer, a second field buffer and a third field buffer that sequentially buffer respective fields of the image signal by order of input, using the respective fields stored in the first, the second and the third field buffers. The apparatus for detecting whether an image signal is in the film mode, includes a motion information calculator calculating a motion information of the respective fields by comparing variations of a motion in the respective fields stored in the first and the third field buffers, a motion information buffer storing the motion information in unit of a predetermined number of fields, and a pattern matching unit determining whether the image signal is in the film mode by comparing the motion information of the respective fields stored in the unit of the predetermined number of fields with a pattern of the field having a predetermined periodicity in accordance with a 3:2 pull-down conversion, and by subsequently determining whether the motion information matches the pattern.
Abstract:
An apparatus and method to enhance a contrast includes a first operation part, a second operation part, and a mapping part. The first operation part calculates an average and a standard deviation of an input image. The second operation part calculates an average and a standard deviation of a target image based on the average and the standard deviation of the input image. The mapping part converts a pixel value of the input image by a mapping function generated by receiving the averages and the standard deviations of the input image and the target image from the first operation part and the second operation part, respectively, and outputs a pixel value of an output image.
Abstract:
A motion adaptive image processing apparatus includes a classifier to classify a current field of a sequence of in put fields into one or more class regions, a calculator to calculate a variance based on pixel values of pixels located in a predetermined region around a certain pixel of the current field, a threshold calculator to calculate a maximum variance and a minimum variance which are pre-set according to the one or more class regions, the threshold calculator calculating a threshold based on the calculated maximum variance and the minimum variance, a motion calculator to calculate a motion change of an image using a previous field and a next field of the current field in the sequence of the input fields, and a weight calculator to calculate the weight to be applied to the certain pixel based on the calculated threshold and the calculated motion change of the image.
Abstract:
A deinterlacing apparatus and method use a buffer unit having a previous field buffer, a current field buffer, and a next field buffer to store, sequentially, individual fields of an image signal; calculate a Sum of Absolute Difference (SAD) value of a predetermined search region unit with reference to a next field stored in the next field buffer and a previous field stored in the previous field buffer; determine whether the predetermined search region is a still region and whether a source of the image signal is a film based on the SAD value; uses a 3D interpolation unit to output adaptively a temporal interpolation value and a spatial interpolation value based on motion information; and adaptively select a deinterlacing result based on the previous field, the next field, and an output of the 3D interpolation unit according to a signal outputted from the still region/film mode detection unit.
Abstract:
An image conversion device and method of interpolating an input image by utilizing a motion estimation that is adaptive according to characteristics of the input image. The image conversion device includes a detection block to receive three consecutive input fields including a first field, a second field as a target interpolation field, and a third field, to determine which of the first field and the third field has a smaller difference value of field data with respect to the second field that is an interpolation target field, and to determine whether one of the first and third fields have a motion change that is greater than a predetermined threshold with respect to the second field, and an interpolation block to interpolate the second field by determining a selected motion estimation value between the one of the first and third fields having the smaller difference value and the second field, determining a third motion estimation value between the first field and the third field, applying different weights to the selected and third motion estimation values depending on whether one of the first and second fields have the motion change that is greater than the predetermined threshold, and mixing the weighted selected and third motion estimation values.
Abstract:
An apparatus and method are provided to equalize a histogram using a cumulative distribution function (CDF) of an image. A model parameter estimator estimates parameters from the image using a Gaussian model. An error function storing unit stores error function values based on a Gaussian distribution. A CDF calculator calculates a CDF using one of the error function values from the error function storing unit and the estimated parameters. A histogram equalizer performs histogram equalization using the CDF.
Abstract:
A brightness control apparatus comprising a probability density function (PDF) calculator to calculate a PDF based on pixel values of respective pixels of an input image signal, a first setter to set an upper limit value and a lower limit value with respect to the pixel values that are equal to or smaller than a predetermined level in the PDF, and a brightness value controller to calculate a cumulative distribution function for the PDF controlled by the upper and lower limit values set by the first setter, and calculating brightness levels corresponding to the input image signal based on the calculated cumulative distribution function. The brightness control apparatus controls the brightness of an image signal so as to prevent it from becoming unnecessarily bright or dark when compensating the brightness of an image signal, while also preventing degradation of contrast.