Abstract:
A method for driving a plasma display panel that includes a plurality of discharge cells including a display electrode pair composed of a scan electrode and a sustain electrode. One field period includes a plurality of subfields each including an initializing period, an address period and a sustain period. The method includes applying at least two kinds of sustain pulses to one electrode of the scan electrode and the sustain electrode in the sustain period, the two kinds of sustain pulses including a first sustain pulse as a reference and a second sustain pulse rising more steeply and falling more gently than the first sustain pulse. In the method, a drive waveform voltage applied to the one electrode includes a last drive waveform voltage in the sustain period and a predetermined number of the second sustain pulses continuously disposed immediately before the last drive waveform voltage.
Abstract:
Provided is a PDP in which a weak discharge is always generated in a stable manner to lower the firing voltage, the generation of the reset luminous points is restricted to improve the image quality, and reduction of the luminous efficiency and reduction of the luminance are restricted to improve the luminance. A manufacturing method of the PDP is also provided.The PDP includes a front panel and a back panel arranged to face each other with a discharge space between the panels. A phosphor layer is provided in an area of the back panel that faces toward the discharge space. Part of the surface of the phosphor layer is covered with a phosphor-coating film as a high γ member. The phosphor-coating film is made of a material having a higher secondary electron emission coefficient than a material of the phosphor layer. The high γ member and the remaining are of the surface of the phosphor layer are exposed to the discharge space.
Abstract:
A frame construction for a low rise building. In the construction, a wall frame panel is made of thin light-gauge section steel by bonding together a surface member, a lower frame member, vertical frame members and an upper frame member. Roof or floor support girders are made of heavyweight section steel having H-shape or channel shape. The girders are coupled to frame construction panels by bolts or hold-down fasteners.
Abstract:
A plasma display panel includes: pairs of electrodes having first electrode and second electrode which are arranged in parallel with each other; first substrate having dielectric layer formed so that the dielectric layer can cover the pairs of electrodes; and second substrate having third electrode which is arranged crossing the pairs of electrodes, and the plasma display panel further includes: floating electrodes, protruding onto a discharge space provided on dielectric layer at positions respectively corresponding to first electrode and second electrode, wherein floating electrodes are opposed to each other. Due to the above composition, the discharge starting voltage is reduced and the drive voltage is decreased. Accordingly, the light emitting efficiency is enhanced.
Abstract:
A plasma display panel in which a plurality of pairs of first and second electrodes are disposed on a first substrate so as to be parallel to each other, a plurality of third electrodes are disposed on a second substrate, and main parts of a plurality of barrier ribs are disposed between adjacent third electrodes, the third electrodes being orthogonal to a longitudinal direction of display electrodes each of which consists of a pair of the first and second electrodes, wherein a plurality of fourth electrodes are fixed to the barrier ribs or areas of a surface of the first substrate facing the barrier ribs so as to be at least in vicinities of areas between adjacent display electrodes, the fourth electrodes being electrically exposed to discharge spaces which are defined by the barrier ribs.
Abstract:
An information processing system for producing a building material comprises a design drawing generating means for generating the design drawing information of an objective building, a list generating means for generating the list information of the members used for the objective building, and a member production control means for controlling the production of the members used for the objective building, based on the list information obtained by the list generating means.
Abstract:
A DC arc welding apparatus using a high-frequency pulse current is disclosed and includes a rectifier bridge for commutating AC voltage and for applying DC voltage having a substantially smooth waveform to a circuit including an electrode and a workpiece for welding. A first switch is connected between an arc load formed between the electrode and the workpiece and a positive output side of the rectifier bridge. A second switch is connected between the arc load and a negative output side of the rectifier bridge. A capacitor has one end connected to a contact of the rectifier bridge and the first switch and another end connected to a contact of the rectifier bridge and the second switch. First and second rectifiers are connected so as to charge energy accumulated in the inductance of the circuit including the electrode and the workpiece during the off state of the first and second switches to the capacitor so that the current passed through the arc load is controlled by an on-off control of the first and second switches.
Abstract:
A plasma display panel includes: pairs of electrodes having first electrode and second electrode which are arranged in parallel with each other; first substrate having dielectric layer formed so that the dielectric layer can cover the pairs of electrodes; and second substrate having third electrode which is arranged crossing the pairs of electrodes, and the plasma display panel further includes: floating electrodes, protruding onto a discharge space provided on dielectric layer at positions respectively corresponding to first electrode and second electrode, wherein floating electrodes are opposed to each other. Due to the above composition, the discharge starting voltage is reduced and the drive voltage is decreased. Accordingly, the light emitting efficiency is enhanced.
Abstract:
Even in a plasma display panel of large screen size and high definition, address discharge is caused stably. A plasma display device has a plasma display panel and a scan electrode driving circuit. The plasma display panel includes a discharge cell having a display electrode pair that is formed of a scan electrode and a sustain electrode. A plurality of subfields having an initializing period, an address period, and a sustain period are disposed in one field period. The scan electrode driving circuit generates an increasing first ramp voltage in the initializing period of at least one subfield in one field period, generates sustain pulse voltage that varies from a base potential to a potential for causing sustain discharge in the sustain period, and generates second ramp voltage that is increased and is dropped immediately after reaching a predetermined potential at the end of the sustain period.
Abstract:
A method for driving a plasma display panel that includes a plurality of discharge cells including a display electrode pair composed of a scan electrode and a sustain electrode. One field period includes a plurality of subfields each including an initializing period, an address period and a sustain period. The method includes applying at least two kinds of sustain pulses to one electrode of the scan electrode and the sustain electrode in the sustain period, the two kinds of sustain pulses including a first sustain pulse as a reference and a second sustain pulse rising more steeply and falling more gently than the first sustain pulse. In the method, a drive waveform voltage applied to the one electrode includes a last drive waveform voltage in the sustain period and a predetermined number of the second sustain pulses continuously disposed immediately before the last drive waveform voltage.