Abstract:
A method to protect an acoustic port of a microelectromechanical system (MEMS) microphone is provided. The method includes: providing the MEMS microphone; and forming a protection film, on the acoustic port of the MEMS microphone. The protection film has a porous region over the acoustic port to receive an acoustic signal but resist at least an intruding material. The protection film can at least endure a processing temperature of solder flow.
Abstract:
A MEMS device includes substrate having a cavity. A dielectric layer is disposed on a second side of substrate at periphery of the cavity. A backplate structure is formed with the dielectric layer on a first side of the substrate and exposed by the cavity. The backplate structure includes at least a first backplate and a second backplate. The first backplate and the second backplate are electric disconnected and have venting holes to connect the cavity and the chamber. A diaphragm is disposed above the backplate structure by a distance, so as to form a chamber between the backplate structure and the diaphragm. A periphery of the diaphragm is embedded in the dielectric layer. The diaphragm serves as a common electrode. The first backplate and the second backplate respectively serve as a first electrode unit and a second electrode unit in conjugation with the diaphragm to form separate two capacitors.
Abstract:
An acoustic micro-device testing apparatus including an acoustic device, at least one device under test (DUT), and a bearing plate is disclosed. The acoustic device provides a testing acoustic source to a first side of the DUT through the main channel and to a second side of the DUT through the side channel. The bearing plate has a first surface and a second surface. The first surface has a chamber sunken into the bearing plate. The second surface has a bearing space sunken into the bearing plate and bearing the DUT. The bearing plate has a main channel connecting the chamber and the DUT and at least one side channel connecting the chamber and the bearing space directly or through the main channel. A cover unit covers the bearing plate so that the bearing space and the chamber form a confined space. The DUT is in the confined space.
Abstract:
Method is to fabricate a MEMS device with a substrate. The substrate has through holes in the substrate within a diaphragm region and optionally an indent space from the second surface at the diaphragm region. A first dielectric structural layer is then disposed over the substrate from the first surface, wherein the first dielectric structural layer has a plurality of openings corresponding to the through holes, wherein each of the through holes remains exposed by the first dielectric structural layer. A second dielectric structural layer with a chamber is disposed over the first dielectric structural layer, wherein the chamber exposes the openings of the first dielectric structural layer and the through holes of the substrate to connect to the indent space. A MEMS diaphragm is embedded in the second dielectric structural layer above the chamber, wherein an air gap is formed between the substrate and the MEMS diaphragm.