Abstract:
In an embodiment, the invention provides a structure of MEMS microphone includes a substrate of semiconductor, having a first opening in the substrate. A dielectric layer is disposed on the substrate, having a dielectric opening. A diaphragm is within the dielectric opening and held by the dielectric layer at a peripheral region, wherein the diaphragm has a diaphragm opening. A back-plate is disposed on the dielectric layer, over the diaphragm. A protruding structure is disposed on the back-plate, protruding toward the diaphragm. At least one air valve plate is affixed on an end of the protruding structure within the diaphragm opening of the diaphragm. The air valve plate is activated when suffering an air flow with a pressure.
Abstract:
A Micro-Electro-Mechanical Systems (MEMS) device includes a substrate, a dielectric supporting layer, a diaphragm, a backplate. The substrate has a substrate opening corresponding to a diaphragm region. The dielectric supporting layer is disposed on the substrate, having a dielectric opening corresponding to the substrate opening to form the diaphragm region. The diaphragm within the dielectric opening is held by the dielectric supporting layer at a periphery. The backplate is disposed on the dielectric supporting layer, having a plurality of venting holes, connecting to the dielectric opening. The backplate includes a conductive layer and a passivation layer covering over the conductive layer at a first side opposite to the diaphragm, wherein a second side of the conductive layer is facing to the diaphragm and not covered by the passivation layer.
Abstract:
The invention provides a MEMS microphone. The MEMS microphone includes a substrate, having a first opening. A dielectric layer is disposed on the substrate, wherein the dielectric layer has a second opening aligned to the first opening. A diaphragm is disposed within the second opening of the dielectric layer, wherein a peripheral region of the diaphragm is embedded into the dielectric layer at sidewall of the second opening. A backplate layer is disposed on the dielectric layer and covering over the second opening. The backplate layer includes a plurality of acoustic holes arranged into a regular array pattern. The regular array pattern comprises a pattern unit, the pattern unit comprises one of the acoustic holes as a center hole, and peripheral holes of the acoustic holes surrounding the center hole with a same pitch to the center hole.
Abstract:
A Micro-Electro-Mechanical Systems (MEMS) device includes a substrate, a dielectric supporting layer, a diaphragm, a backplate. The substrate has a substrate opening corresponding to a diaphragm region. The dielectric supporting layer is disposed on the substrate, having a dielectric opening corresponding to the substrate opening to form the diaphragm region. The diaphragm within the dielectric opening is held by the dielectric supporting layer at a periphery. The backplate is disposed on the dielectric supporting layer, having a plurality of venting holes, connecting to the dielectric opening. The backplate includes a conductive layer and a passivation layer covering over the conductive layer at a first side opposite to the diaphragm, wherein a second side of the conductive layer is facing to the diaphragm and not covered by the passivation layer.
Abstract:
A method to protect an acoustic port of a microelectromechanical system (MEMS) microphone is provided. The method includes: providing the MEMS microphone; and forming a protection film, on the acoustic port of the MEMS microphone. The protection film has a porous region over the acoustic port to receive an acoustic signal but resist at least an intruding material. The protection film can at least endure a processing temperature of solder flow.
Abstract:
The invention provides a MEMS microphone. The MEMS microphone includes a substrate, having a first opening. A dielectric layer is disposed on the substrate, wherein the dielectric layer has a second opening aligned to the first opening. A diaphragm is disposed within the second opening of the dielectric layer, wherein a peripheral region of the diaphragm is embedded into the dielectric layer at sidewall of the second opening. A backplate layer is disposed on the dielectric layer and covering over the second opening. The backplate layer includes a plurality of acoustic holes arranged into a regular array pattern. The regular array pattern comprises a pattern unit, the pattern unit comprises one of the acoustic holes as a center hole, and peripheral holes of the acoustic holes surrounding the center hole with a same pitch to the center hole.
Abstract:
A Micro-Electro-Mechanical Systems (MEMS) device includes a substrate, a dielectric supporting layer, a diaphragm, a backplate. The substrate has a substrate opening corresponding to a diaphragm region. The dielectric supporting layer is disposed on the substrate, having a dielectric opening corresponding to the substrate opening to form the diaphragm region. The diaphragm within the dielectric opening is held by the dielectric supporting layer at a periphery. The backplate is disposed on the dielectric supporting layer, having a plurality of venting holes, connecting to the dielectric opening. The backplate includes a conductive layer and a passivation layer covering over the conductive layer at a first side opposite to the diaphragm, wherein a second side of the conductive layer is facing to the diaphragm and not covered by the passivation layer.
Abstract:
A method to protect an acoustic port of a microelectromechanical system (MEMS) microphone is provided. The method includes: providing the MEMS microphone; and forming a protection film, on the acoustic port of the MEMS microphone. The protection film has a porous region over the acoustic port to receive an acoustic signal but resist at least an intruding material. The protection film can at least endure a processing temperature of solder flow.
Abstract:
A micro-electrical-mechanical system (MEMS) microphone includes a MEMS structure, having a substrate, a diaphragm, and a backplate, wherein the substrate has a cavity and the backplate is between the cavity and the diaphragm. The backplate has multiple venting holes, which are connected to the cavity and allows the cavity to extend to the diaphragm. Further, an adhesive layer is disposed on the substrate, surrounding the cavity. A cover plate is adhered on the adhesive layer, wherein the cover plate has an acoustic hole, dislocated from the cavity without direct connection.
Abstract:
A structure of micro-electro-mechanical-system (MEMS) microphone includes a substrate, having a first opening. A dielectric layer is disposed on the substrate, wherein the dielectric layer has a second opening aligned to the first opening. A membrane is disposed within the second opening of the dielectric layer. A peripheral region of the membrane is embedded into the dielectric layer at sidewall of the second opening. A backplate layer is disposed on the dielectric layer. The backplate layer includes a protection layer, having a peripheral region disposed on the dielectric layer and a central region with venting holes over the second opening. The central region of the protection layer further has anti-sticky structures at a side of the protection layer toward the membrane. An electrode layer is disposed on the side of the protection layer, surrounding the anti-sticky structures.