Abstract:
A structure of micro-electro-mechanical-system (MEMS) microphone package includes a packaging substrate and an integrated circuit disposed on the packaging substrate. In addition, a MEMS microphone is disposed on the packaging substrate, wherein the MEMS microphone is electrically connected to the integrated circuit. A conductive adhesion layer is disposed on the packaging substrate, surrounding the integrated circuit and the MEMS microphone. A cap structure has a bottom part being adhered to the conductive adhesion layer. An underfill layer is disposed on the packaging substrate, covering an outer side of the conductive adhesion layer.
Abstract:
A method for fabricating MEMS device includes providing a silicon substrate. A structural dielectric layer is formed over a first side of the silicon substrate. Structure elements are embedded in the structural dielectric layer. The structure elements include a conductive backplate disposed over the silicon substrate, having venting holes and protrusion structures on top of the conductive backplate; and diaphragm located above the conductive backplate by a distance. A chamber is formed between the diaphragm and the conductive backplate. A cavity is formed in the silicon substrate at a second side. The cavity corresponds to the structure elements. An isotropic etching is performed on a dielectric material of the structural dielectric layer to release the structure elements. A first side of the diaphragm is exposed by the chamber and faces to the protrusion structures of the conductive backplate. A second side of the diaphragm is exposed to an environment space.
Abstract:
Method is to fabricate a MEMS device with a substrate. The substrate has through holes in the substrate within a diaphragm region and optionally an indent space from the second surface at the diaphragm region. A first dielectric structural layer is then disposed over the substrate from the first surface, wherein the first dielectric structural layer has a plurality of openings corresponding to the through holes, wherein each of the through holes remains exposed by the first dielectric structural layer. A second dielectric structural layer with a chamber is disposed over the first dielectric structural layer, wherein the chamber exposes the openings of the first dielectric structural layer and the through holes of the substrate to connect to the indent space. A MEMS diaphragm is embedded in the second dielectric structural layer above the chamber, wherein an air gap is formed between the substrate and the MEMS diaphragm.
Abstract:
A micro-electrical-mechanical system (MEMS) microphone includes a MEMS structure, having a substrate, a diaphragm, and a backplate, wherein the substrate has a cavity and the backplate is between the cavity and the diaphragm. The backplate has multiple venting holes, which are connected to the cavity and allows the cavity to extend to the diaphragm. Further, an adhesive layer is disposed on the substrate, surrounding the cavity. A cover plate is adhered on the adhesive layer, wherein the cover plate has an acoustic hole, dislocated from the cavity without direct connection.
Abstract:
A method for releasing a diaphragm of a micro-electro-mechanical systems (MEMS) device at a stage of semi-finished product. The method includes pre-wetting the MEMS device in a pre-wetting solution to at least pre-wet a sidewall surface of a cavity of the MEMS device. Then, a wetting process after the step of pre-wetting the MEMS device is performed to etch a dielectric material of a dielectric layer for holding the diaphragm, wherein a sensing portion of the diaphragm is released from the dielectric layer.
Abstract:
A method for fabricating MEMS device includes providing a silicon substrate. A structural dielectric layer is formed over a first side of the silicon substrate. Structure elements are embedded in the structural dielectric layer. The structure elements include a conductive backplate disposed over the silicon substrate, having venting holes and protrusion structures on top of the conductive backplate; and diaphragm located above the conductive backplate by a distance. A chamber is formed between the diaphragm and the conductive backplate. A cavity is formed in the silicon substrate at a second side. The cavity corresponds to the structure elements. An isotropic etching is performed on a dielectric material of the structural dielectric layer to release the structure elements. A first side of the diaphragm is exposed by the chamber and faces to the protrusion structures of the conductive backplate. A second side of the diaphragm is exposed to an environment space.
Abstract:
A structure of micro-electro-mechanical-system (MEMS) microphone package includes a packaging substrate and an integrated circuit disposed on the packaging substrate. In addition, a MEMS microphone is disposed on the packaging substrate, wherein the MEMS microphone is electrically connected to the integrated circuit. A conductive adhesion layer is disposed on the packaging substrate, surrounding the integrated circuit and the MEMS microphone. A cap structure has a bottom part being adhered to the conductive adhesion layer. An underfill layer is disposed on the packaging substrate, covering an outer side of the conductive adhesion layer.
Abstract:
A method for releasing a diaphragm of a micro-electro-mechanical systems (MEMS) device at a stage of semi-finished product. The method includes pre-wetting the MEMS device in a pre-wetting solution to at least pre-wet a sidewall surface of a cavity of the MEMS device. Then, a wetting process after the step of pre-wetting the MEMS device is performed to etch a dielectric material of a dielectric layer for holding the diaphragm, wherein a sensing portion of the diaphragm is released from the dielectric layer.
Abstract:
A MEMS microphone package device includes a MEMS microphone chip as an integrated circuit chip. An acoustic sensing structure is embedded in the integrated circuit chip. An adhesive structure adheres on outer sidewall of the microphone chip. A bottom portion of the adhesive structure protrudes out from first surface of the microphone chip and adheres on a surface of a substrate, having interconnection structure, to form a first seal ring. A space between the acoustic sensing structure and the substrate and sealed by the first seal ring forms a second chamber. A cover adheres to top portion of the adhesive structure, covering over the cavity on the second surface of the microphone chip. The top portion of the adhesive structure forms as a second seal ring. A space between the cover and the second surface of the microphone chip and sealed by the second seal ring forms a first chamber.
Abstract:
A method to protect an acoustic port of a microelectromechanical system (MEMS) microphone is provided. The method includes: providing the MEMS microphone; and forming a protection film, on the acoustic port of the MEMS microphone. The protection film has a porous region over the acoustic port to receive an acoustic signal but resist at least an intruding material. The protection film can at least endure a processing temperature of solder flow.