Abstract:
Methods and apparatus are provided for improving the configuration, management, and distribution of quality of service information in a fibre channel fabric using zoning mechanisms. Configuration of Quality of Service (QoS) information is made easy by using zones as a classifier for flows. QoS information is included in zone objects, thereby using the existing zone distribution mechanism to distribute QoS information. Devices not part of any zones are placed automatically in the default zone with a default QoS priority level. QoS information for a particular packet is available as soon as the zoning information is obtained.
Abstract:
Techniques are disclosed for zoning information to be shared with an NPIV proxy device or an NPV device such as a blade switch in a blade chassis. Doing so allows the NPV device to enforce zoning locally for the attached server blades and virtualized systems. The NPV device may learn zoning rules using Fibre Channel name server queries and registered state change notifications. Additionally, the NPV device may snoop name server queries to retrieve zoning information (or state change messages) without using the zoning change protocols and without consuming a Fibre Channel domain from the Fibre Channel fabric.
Abstract:
A Fibre Channel Switch which enables end devices in different Fabrics to communicate with one another while retaining their unique Fibre Channel Domain_IDs. The Switch is coupled to a first fabric having a first set of end devices and a second fabric having a second set of end devices. The Switch is configured to enable communication by the first set of end devices associated with the first fabric with the second set of end devices associated with the second set of end devices using the unique Domain_IDs of each of the first set and the second set of end devices. In one embodiment of the invention, the first and second fabrics are first and second Virtual Storage Array Networks (VSANs) respectively. In an alternative embodiment, the first fabric and the second fabric are separate physical fabrics.
Abstract:
According to the present invention, methods and apparatus are provided to allow for distribution of fiber channel messages. Messages associated with a variety of applications can be distributed within a single logical fabric to physical connected but logically disconnected fabrics. Interconnecting switches forward messages to neighboring fabrics and aggregate responses before replying to a first fabric.
Abstract:
Methods and apparatus are provided for improving the configuration, management, and distribution of quality of service information in a fibre channel fabric using zoning mechanisms. Configuration of Quality of Service (QoS) information is made easy by using zones as a classifier for flows. QoS information is included in zone objects, thereby using the existing zone distribution mechanism to distribute QoS information. Devices not part of any zones are placed automatically in the default zone with a default QoS priority level. QoS information for a particular packet is available as soon as the zoning information is obtained.
Abstract:
A granular castable refractory composition is provided which has excellent insulating properties as well as high strength and resistance to oxidation, corrosion or erosion. The refractory insulating composition can be easily transported using a pump, and avoids the potential hazards associated with asbestos and ceramic fibers. The refractory insulating composition is prepared by mixing a low density expanded granular refractory insulating material having a density of 7-50 lb/ft.sup.3 with a conventional high density refractory material having a density of at least 150 lb/ft.sup.3 to form a dry component, and by mixing the dry component with aqueous colloidal silica to provide excellent flow properties for pumping and, ultimately, excellent binding properties.
Abstract translation:提供了具有优异的绝缘性能以及高强度和耐氧化,腐蚀或腐蚀的优异的颗粒状可浇铸耐火材料组合物。 耐火绝缘组合物可以使用泵轻易运输,避免与石棉和陶瓷纤维相关的潜在危害。 难熔绝缘组合物通过将密度为7-50lb / ft 3的低密度发泡粒状耐火绝缘材料与密度为至少150lb / ft 3的常规高密度耐火材料混合以形成干组分来制备,以及 通过将干组分与水性胶体二氧化硅混合以提供优异的泵送流动性质,最终具有优异的粘合性能。
Abstract:
Techniques are provided for sending from a client in a first network device a first session-initiate message to a second network device that is configured to provide network layer, data link layer, or associated convergence layer based service connection information in order for the second network device to accept or reject a network layer, data link layer, or associated convergence layer based service connection with the first network device. The first session-initiate message is based on a messaging and presence protocol. A session-accept message is received at the client in the first network device that is configured to accept the service connection and provide a network layer, data link layer, or associated convergence layer based service connection information in order for the first network device to establish the service connection with the second network device. The session-accept message is based on the messaging and presence protocol. In response to receiving the session-accept message, the service connection is established.
Abstract:
In one embodiment, a method comprises receiving a request for a distributed service, the distributed service offered by a service provider via a data communications network having service delivery locations reachable via a prescribed physical topology; identifying the service delivery locations within a prescribed logical topology overlying the prescribed physical topology, the prescribed logical topology segregating the distributed service from other network traffic on the prescribed physical topology; and identifying one or more of the service delivery locations optimized for providing the distributed service to at least one service consumption location in the prescribed logical topology according to a prescribed service level agreement with the service provider.
Abstract:
In one embodiment, a method comprises retrieving a request graph specifying request nodes identifying respective requested cloud computing service operations, and at least one request edge specifying a requested path requirements connecting the request nodes; identifying a placement pivot among feasible cloud elements identified in a physical graph representing a data network having a physical topology, each feasible cloud element an available solution for one of the request nodes, the placement pivot having a maximum depth in the physical topology relative to the feasible cloud elements; ordering the feasible cloud elements, according to increasing distance from the placement pivot to form an ordered list of candidate sets of feasible cloud elements; and determining an optimum candidate set, from at least a portion of the ordered list, based on the optimum candidate set having an optimized fitness function in the physical graph among the other candidate sets in the ordered list.
Abstract:
Techniques are disclosed for zoning information to be shared with an NPIV proxy device or an NPV device such as a blade switch in a blade chassis. Doing so allows the NPV device to enforce zoning locally for the attached server blades and virtualized systems. The NPV device may learn zoning rules using Fiber Channel name server queries and registered state change notifications. Additionally, the NPV device may snoop name server queries to retrieve zoning information (or state change messages) without using the zoning change protocols and without consuming a Fiber Channel domain from the Fiber Channel fabric.