Abstract:
A system includes a first mobile device configured to initiate communication with at least one other mobile device. The first mobile device includes a status indicator configured to provide a persistent visual indication to a user of the status of a mute function of the first user device during the active communication. The first mobile device further includes a user interface configured to receive predefined user input and allow the user to toggle between mute and un-mute states based on the user input regardless of whether a display of the device is shut off and/or the user interface is locked.
Abstract:
Technologies for controlling a machine include a compute system configured to control operation of the machine. The compute system is configured to detect a moral conflict related to the operation of the machine and determine operational choices for operation of the machine to resolve the moral conflict. The compute system also determines a moral agent likely to be affected by each operational choice and one or more moral rules applicable to the moral conflict. The moral agents may be weighted based on a set of weighting rules, which may vary based on geographical location and/or other criteria. Each moral rule defines a goal to be achieved by the operation of the machine. The compute system is further configured to select one of the operational choices to resolve the conflict based on the determined moral agents and the moral rules and control the machine to perform the selected operational choice.
Abstract:
Generally, this disclosure describes a method and system for peer-based collaborative discovery and signaling of another device in limited signal areas. A method may include, in an embodiment, initiating a sensing mode in a seek mobile device in response to receiving an indication that a location of a lost mobile device is unknown; capturing first position data if a signal from the lost device is detected; capturing second position data in response to losing the signal from the lost device; and determining an estimated location of the lost device based on the first position data and the second position data, wherein the lost device is located in an area of limited or no connectivity and the seek device is moving through the area.
Abstract:
Systems and methods for searching for lost moving objects such as children are disclosed. In some embodiments, the systems and methods initiate an autonomous, expanding electronic search by emitting a search activation signal from a search initiation device. The search activation signal may include the target tag identifier of a target tag conveyed by the moving object. Search devices detecting the target tag may generate a hit signal, which may be used to determine the location of the target tag. In some instances, focused human searching for the moving object may be initiated based on this determined location, and/or on location information included in one or more hit signals.
Abstract:
This disclosure is directed to a protection system including machine learning snapshot evaluation. A device may comprise a machine learning engine (MLE) to generate snapshots of device operation. The MLE may use active or planned operations in the snapshot to learn user behavior. Once normal user behavior is established for the device, the MLE may be able to determine when snapshots include unusual behavior that may signify a threat to the device. Snapshots determined to include unusual behavior may be transmitted to a remote resource for evaluation. The remote resource may include at least a user behavior classification engine (UBCE) to classify the user behavior by characterizing it as at least one type of use. The snapshot may be analyzed by the UBCE to determine if potential threats exist in the device, and the threat analysis may be provided to the device for evaluation and/or corrective action.
Abstract:
Systems and methods for searching for lost moving objects such as children are disclosed. In some embodiments, the systems and methods initiate an autonomous, expanding electronic search by emitting a search activation signal from a search initiation device. The search activation signal may include the target tag identifier of a target tag conveyed by the moving object. Search devices detecting the target tag may generate a hit signal, which may be used to determine the location of the target tag. In some instances, focused human searching for the moving object may be initiated based on this determined location, and/or on location information included in one or more hit signals.
Abstract:
In one embodiment, a method includes receiving, in a mobile station of a terminating party, an incoming call and an identifier of a service provider of an initiating party of the incoming call, and displaying information corresponding to the initiating party service provider on a display of the mobile station. Other embodiments are described and claimed.
Abstract:
A device and method for predictively precaching content on a mobile communication device includes monitoring numerous data sources for contextual data on the activities of the user. The mobile communication device predicts network connectivity outages and affected applications using the contextual data. The mobile communication device notifies the affected applications of the predicted network connectivity outage, and in response the affected applications precache suitable content. The affected applications may employ several precaching strategies in response to the notification, such as downloading content from a remote content server, adjusting content streaming, or adjusting content buffering prior to the predicted network connectivity outage. During the network outage, application service is provided using the precached content. Such precaching may also be accomplished using a local caching proxy server.
Abstract:
Systems and methods may provide for identifying web content and detecting an attempt by the web content to access a local data store. Additionally, a determination may be made as to whether to permit the attempt based on a context-based security policy. In one example, the context-based security policy is obtained from one or more of a user profile, a multi-user data source and a cloud service.
Abstract:
Various embodiments are generally directed to cooperation among networked devices to obtain and use a multiple-frame screenshot. In one embodiment, an apparatus comprises a processor circuit executing a sequence causing the processor circuit to receive a signal conveying a context data; retrieve an aspect of a current context of the apparatus; compare the aspect to the context data; determine whether a context defined as appropriate exists to engage in interactions with one or more other computing devices through a network based on the comparison, the interactions comprising providing a network service to the one or more other computing devices; and engage in the interactions with one or more computing devices through the network when the appropriate context to engage in the interactions exists. Other embodiments are described and claimed herein.