Abstract:
In one illustrative example of the present disclosure, a mobile communication device has one or more processors and a wireless transceiver adapted to provide communications through a wireless communication network. The one or more processors are operative to produce a mobile device indication message which indicates whether the mobile device supports buffering of Push-To-Talk (PTT) communications from the mobile device. This message is transmitted by the wireless transceiver to a PTT service entity through the wireless network. The one or more processors may be further operative to receive, from the PTT service entity through the wireless network, a network indication message which instructs the mobile device whether to use buffering for the PTT communications from the mobile device (assuming a buffer memory for PTT buffering is available in the mobile device). The mobile device may use the buffer memory for the buffering of the PTT communication based on the network indication message from the PTT service entity.
Abstract:
A mobile device detects whether its temperature is within a first or second range of values, and operates in a full communication state within the first range and a limited communication state within the second range. The mobile device receives a communication request for establishment of a voice call or for communication of a user data message. In the full communication state, the mobile device permits an emergency or non-emergency voice call to be established, and permits a user data message to be communicated. In the limited communication state, the mobile device inhibits a non-emergency voice call from being established, but permits an emergency voice call to be established.
Abstract:
A wireless user device maintains wireless access via a public land mobile network and, while maintaining such wireless access, participates with one or more other devices in an instant communication session delivered via a carrier instant communications processing element of the public land mobile network. The session communications from the wireless user device are routed through a processing element of a private communication network for an assignment of a generic identifier to the session communications in place of a user identifier of the wireless user device, and then routed back to the public land mobile network to the carrier instant communications processing element for delivery to the one or more other devices in the instant communication session.
Abstract:
Disclosed are polymers which include tertiary aryl amine moieties that can function as hole transport agents and which also have reactive silane groups thereon capable of being condensed to a silsesquioxane composition, as well as the silsesquioxane compositions prepared therefrom. The silsesquioxanes can be coated onto substrates to form abrasion-resistant layers having hole transport properties useful in devices that require charge transport properties, such as light-emitting diodes and organic electrophotographic elements such as photoreceptors or photoconductors. Also disclosed are electrophotographic elements which comprise an electrically conducting layer, a charge generating layer overlying the electrically conducting layer, and a charge transport layer overlying the electrically conducting layer. The charge transport layer, which can be an overcoat overlying the charge generating layer, comprises the condensed reaction product of the disclosed polymers.
Abstract:
A method of making polymeric particles having a controlled size and size distribution, and in particular a method for the preparation of chemically prepared toners, via evaporative limited coalescence process, wherein basic silicate salts are employed to remove particulate stabilizer from precipitated polymer particles. The process includes the steps of dispersing polymeric binder materials and optional additives in an organic solvent to form an organic phase. The organic phase is dispersed by high shear agitation in an aqueous phase containing a particulate stabilizer, e.g. colloidal silica, to form a dispersion of small droplets of the organic phase in the aqueous phase. The dispersion is homogenized and the organic solvent is removed from the dispersed particles in the dispersion by evaporation, and polymeric particles are precipitated with particulate stabilizer on the surface thereof, which are then recovered, treated with a basic silicate salt to remove particulate stabilizer, and washed and dried.
Abstract:
A test apparatus for conducting a radiated performance test on a wireless device under controlled test conditions, the test apparatus having an anechoic chamber; a test computer; and an interface, the interface adapted to connect the test computer to the wireless device, the test apparatus being adapted to: establish a data connection on the interface between the test computer and the wireless device; initialize and start a timer for a predetermined interval on the wireless device; subject the wireless device to the radiated performance test in the anechoic chamber after the predetermined interval; and analyze test results on the test computer from a test log stored on the wireless device during the radiated performance test, wherein the interface between the test computer and the wireless device is adapted to be removed during the predetermined interval; for conducting a radiated performance test on a wireless device
Abstract:
Techniques involving a wireless user device adapted to operate in a carrier network, and associated with a private organization having a private communication network which is not part of the carrier network, are described. The wireless user device gains wireless access via the carrier network and communicates, via the carrier network, with other wireless user devices in a push-to-talk (PTT) voice communication session. The PTT voice communication session is delivered via a carrier processing element of the carrier network, where voice communications of the PTT voice communication session are routed and processed through a private processing element of the private communication network. The voice communications from the wireless user device are assigned and communicated with a generic identifier of the private organization instead of a user identifier of the wireless user device.
Abstract:
The wireless communication device includes a wireless communication transceiver to generate an oscillator control signal and an activation signal, a positioning-system receiver (e.g. a GPS receiver) to process received positioning signals, and a shared oscillator (e.g. a temperature compensated and voltage controlled crystal oscillator TCVCXO) responsive to the oscillator control signal and to generate a reference frequency signal for the wireless communication transceiver and the positioning-system receiver. The positioning-system receiver may control processing of the received positioning signals based upon the activation signal to reduce a noise contribution (e.g. phase noise) due to frequency control of the shared oscillator based upon the oscillator control signal. The activation signal may indicate that the oscillator control signal is being varied to provide frequency control or adjustment of the shared oscillator.
Abstract:
A communications subsystem for a wireless device for correcting errors in a reference frequency signal. The communications subsystem comprises a frequency generator for generating the reference frequency signal and a closed loop reference frequency correction module that generates a reference frequency adjustment signal for correcting the reference frequency signal when the communications subsystem operates in closed loop mode. The subsystem further includes an open loop frequency correction means that that samples values of the reference frequency adjustment signal during the closed loop mode and generates a frequency correction signal for correcting the reference frequency signal when the communications subsystem operates in a mode other than closed loop mode.
Abstract:
Methods and apparatus for facilitating the determination of Global Positioning System (GPS) location information for a mobile station without disrupting communications of a voice call (e.g. a 911 emergency call). In one illustrative example, the mobile station causes GPS navigational-type data to be regularly or periodically received and stored in memory prior to the voice call. At some point in time, the mobile station receives a voice call request to initiate the voice call. In response, the mobile station derives GPS assistance data based on the GPS navigational-type data. The mobile station then causes a GPS fix to be performed using the GPS assistance data, to thereby obtain GPS measurement data. Thereafter, the mobile station causes the voice call to be established and maintained through the wireless network. The GPS measurement data is transmitted to a location server for calculating the location of the mobile station.