Abstract:
A method of manufacturing a display substrate includes forming a plurality of thin film transistors (TFTs) on a first substrate in a matrix, forming a plurality of pixel electrodes connected to the TFTs, forming a connecting pad to receive a common voltage, forming an organic pattern on the connecting pad, depositing an inorganic alignment layer covering the organic pattern on the first substrate, and removing the organic pattern and the inorganic alignment layer remaining on the organic pattern.
Abstract:
A liquid crystal display (“LCD”) device includes a first substrate, a pixel electrode, a second substrate, a common electrode and an alignment layer. The first substrate includes a thin-film transistor (“TFT”) and a plurality of pixel areas disposed on the first substrate. The pixel electrode is disposed on the TFT. The second substrate is disposed opposite to the first substrate. The common electrode is disposed on the second substrate. The alignment layer includes an insulation layer and a photoalignment layer, disposed on at least one of the pixel electrode and the common electrode.
Abstract:
A liquid crystal display (“LCD”) having controlled texture and reduced response time includes first and second insulation substrates which are separated from each other and face each other, a liquid crystal layer which is interposed between the first and second insulation substrates and has liquid crystal molecules, a pixel electrode which is disposed on the first insulation substrate and includes a plurality of first linear electrode patterns, a common electrode which is disposed on the first insulation substrate and includes a plurality of second linear electrode patterns separated from the first linear electrode patterns by a predetermined gap, and a texture control portion which is disposed in an area corresponding to the gap and formed on the first or second insulation substrate, wherein the first and second linear electrode patterns are arranged in an alternating fashion.
Abstract:
An apparatus for measuring response time of a display apparatus including a photographing part including a charge coupled device camera and a microscope, an image processing part receiving a picture taken from a photographing part and calculating the response time thereof, and a control part applying a predetermined image signal to the display apparatus and controlling the photographing part to take a picture change of the display apparatus at a predetermined time.
Abstract:
An apparatus for measuring response time of a display apparatus including a photographing part including a charge coupled device camera and a microscope, an image processing part receiving a picture taken from a photographing part and calculating the response time thereof, and a control part applying a predetermined image signal to the display apparatus and controlling the photographing part to take a picture change of the display apparatus at a predetermined time.
Abstract:
The invention provides a LCD including an insulating substrate; a plurality of first signal lines formed on the insulating substrate; a plurality of second signal lines crossing and insulated from the first signal lines; a plurality of thin film transistors (TFT) coupled with the first and second signal lines; and a plurality of pixels including a plurality of first sub-pixel electrodes coupled with the TFTs and a plurality of second sub-pixel electrodes capacitively coupled with the first sub-pixel electrodes, wherein the pixels include a red (R) pixel, a green (G) pixel, and a blue (B) pixel and a voltage ratio or an area ratio of the second sub-pixel electrode with respect to the first sub-pixel electrode is different among the R, G, and B pixels to improve a brightness ratio of R, G, and B components at a lateral position.
Abstract:
A liquid crystal display, including a first substrate and a second substrate, each having a plurality of unit pixel areas and facing each other, and a liquid crystal layer between the first substrate and the second substrate, in which the plurality of unit pixel areas each have a plurality of domains. In a first domain of the plurality of domains, a first alignment layer of the first substrate and a second alignment layer of the second substrate are photo-aligned, and in a second domain of the plurality of domains, the second alignment layer of the second substrate is photo-aligned twice and the first alignment layer of the first substrate is not photo-aligned.
Abstract:
A display panel includes a lower substrate, an upper substrate and a liquid crystal layer. The liquid crystal layer includes a plurality of domains, a horizontal domain boundary texture area and a vertical domain boundary texture area. The domains are disposed in a matrix shape. The horizontal domain boundary texture area extends in a first direction in a boundary between the domains adjacent to each other in a second direction and has a slope of a liquid crystal slowly (e.g., less) inclined compared to that of the domains. The vertical domain boundary texture area extends in the second direction in a boundary between the domains adjacent to each other in the first direction and has a width larger than that of the horizontal domain boundary texture area.
Abstract:
A lens panel includes a first substrate, a second substrate, and a liquid crystal layer. The first substrate includes a first base substrate, a first electrode disposed on the first base substrate, and a first alignment layer disposed on the first electrode. The first alignment layer includes a unit lens area. The unit lens area includes a first alignment area having a first azimuthal angle and a second alignment area having a second azimuthal angle. The lens panel may be controlled to function as a Fresnel lens by adjusting the azimuthal angle of the alignment layer without electrodes having micro pitch patterns
Abstract:
A lens panel includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a first base substrate, a first electrode formed on the first base substrate, and a first alignment layer formed on the first electrode. The first alignment layer includes a plurality of unit alignment areas forming a lens unit and is aligned to have a first azimuth angle and a plurality of first polarized angles. The first polarized angles vary in the unit alignment area. The second substrate includes a second base substrate, a second electrode formed on the second base substrate, and a second alignment layer aligned to have a second azimuth angle and a second polarized angle. The liquid crystal layer is disposed between the first substrate and the second substrate.