Abstract:
A robot cleaner system having an improved docking structure to allow a dust discharge port of a robot cleaner to come into close contact with a dust suction port of a docking station without an additional drive device. The robot cleaner system includes a robot cleaner having a dust discharge port, a docking station having a dust suction port to suction dust collected in the robot cleaner, and a docking device to perform a seesaw movement as it comes into contact with the robot cleaner when the robot cleaner docks with the docking station, so as to allow the dust suction port to come into close contact with the dust discharge port. The docking device further includes a link member installed in the docking station in a pivotally rotatable manner. The link member has one end provided with a contact portion to come into contact with the robot cleaner, and the other end provided with a docking portion defining the dust suction port therein.
Abstract:
A robot system includes a position information emitting unit including a light emitter to emit a light including phase information and a supersonic wave emitter to emit a supersonic wave, and a robot including a light receiver to receive the light, a supersonic wave receiver to receive the supersonic wave, and a position determining part to determine a relative position of the robot with respect to the position information emitting unit based on the phase information of the light received through the light receiver and the supersonic wave received through the supersonic wave receiver. Thus the robot system can precisely determine the position of the robot regardless of external environments, and reduce cost of a configuration of the system.
Abstract:
A robot joint driving apparatus has an improved structure, a robot having the same, and a cable linkage method of the robot joint driving apparatus. In the robot joint driving apparatus, lines of a cable to drive a robot joint unit are connected plural times in parallel, thereby increasing torsional stiffness of the robot joint unit. Further, a cable fixing unit is provided on an output pulley, thereby preventing slippage of the cable on the output pulley. Moreover, the overall size of the robot joint driving apparatus is reduced due to an improved power transmission structure from a driving motor to the output pulley.
Abstract:
A cleaning robot to prevent a suction member from moving upwards when the suction member is rotated during a collision with an obstacle, and which completely unfolds the suction member when a lower surface of the suction member travels on an uneven floor. The cleaning robot includes a main body to travel on a floor to be cleaned, a dust collecting unit, and a corner cleaning unit. The corner cleaning unit includes a suction member having a suction arm with a rotatable cylinder, a movable member rotatably coupled around the rotatable cylinder by a torsion spring such that the movable member can move upwards and downwards together with the suction member, a driving unit, supporting brackets, at least one elevation guide face to allow the movable member to move upwards and downwards along the elevation guide face as the movable member rotates, and at least one guide knob.
Abstract:
A walking robot, in which driving structures of a pitch direction hip joint and a knee joint of a leg are enhanced. The walking robot includes a trunk, and a plurality of legs connected to the trunk, at least one leg among the plurality of legs includes a thigh link, a calf link provided at the lower portion of the thigh link, a pitch direction hip joint connecting the trunk and the thigh link and rotating the thigh link against the trunk in a pitch direction, and a knee joint connecting the thigh link and the calf link and rotating the calf link against the thigh link in the pitch direction. The pitch direction hip joint and the knee joint are interlocked with each other and are driven by one interlocking actuator.
Abstract:
A compliant joint capable of achieving passive compliance for a robot in order to prevent an injury to a human by collision with the robot. The compliant joint includes a housing, a cam member rotatably mounted in the housing, a roller spring device mounted to the cam member to be compressed and extended, a guiding member formed in the housing to guide compression and extension of the roller spring device in accordance with rotation of the cam member, and a receiving recess formed at the guiding member to engage the housing and the cam member with each other by receiving the roller spring device and release the engagement by separating from the roller spring device. Accordingly, robustness of the robot can be maintained when an impact less than a predetermined magnitude is applied, while being suddenly decreased when an impact greater than the magnitude is applied.
Abstract:
A charging apparatus used with a mobile robot has an improved charging structure so that a mobile robot is easily brought into electrical contact with a charging unit, thereby reducing manufacturing costs and preventing a charging failure. The charging unit is provided with a plurality of charging terminals which are brought into electrical contact with corresponding ones of contact terminals of the mobile robot. Each of the charging terminals includes a body and a head. A contact plate is mounted to a predetermined portion of the head to be brought into electrical contact with a corresponding one of the contact terminals.