Image Cropping Suggestion Using Multiple Saliency Maps

    公开(公告)号:US20170178291A1

    公开(公告)日:2017-06-22

    申请号:US15448138

    申请日:2017-03-02

    CPC classification number: G06T3/40 G06K9/4671 G06T3/0012 G06T11/60 G06T2210/22

    Abstract: Image cropping suggestion using multiple saliency maps is described. In one or more implementations, component scores, indicative of visual characteristics established for visually-pleasing croppings, are computed for candidate image croppings using multiple different saliency maps. The visual characteristics on which a candidate image cropping is scored may be indicative of its composition quality, an extent to which it preserves content appearing in the scene, and a simplicity of its boundary. Based on the component scores, the croppings may be ranked with regard to each of the visual characteristics. The rankings may be used to cluster the candidate croppings into groups of similar croppings, such that croppings in a group are different by less than a threshold amount and croppings in different groups are different by at least the threshold amount. Based on the clustering, croppings may then be chosen, e.g., to present them to a user for selection.

    Iterative saliency map estimation
    35.
    发明授权
    Iterative saliency map estimation 有权
    迭代显着图估计

    公开(公告)号:US09330334B2

    公开(公告)日:2016-05-03

    申请号:US14062559

    申请日:2013-10-24

    Abstract: In techniques for iterative saliency map estimation, a salient regions module applies a saliency estimation technique to compute a saliency map of an image that includes image regions. A salient image region of the image is determined from the saliency map, and an image region that corresponds to the salient image region is removed from the image. The salient regions module then iteratively determines subsequent salient image regions of the image utilizing the saliency estimation technique to recompute the saliency map of the image with the image region removed, and removes the image regions that correspond to the subsequent salient image regions from the image. The salient image regions of the image are iteratively determined until no salient image regions are detected in the image, and a salient features map is generated that includes each of the salient image regions determined iteratively and combined to generate the final saliency map.

    Abstract translation: 在迭代显着性图估计技术中,显着区域模块应用显着性估计技术来计算包括图像区域的图像的显着性图。 从显着性图确定图像的显着图像区域,并且从图像中去除对应于显着图像区域的图像区域。 显着区域模块然后使用显着性估计技术迭代地确定图像的随后的显着图像区域,以重新计算去除图像区域的图像的显着图,并且从图像中去除与后续显着图像区域相对应的图像区域。 迭代地确定图像的显着图像区域,直到在图像中没有检测到显着的图像区域,并且生成包括迭代地确定并组合的每个显着图像区域以产生最终显着图的显着特征图。

    USING GENETIC ALGORITHM TO DESIGN 2-DIMENSIONAL PROCEDURAL PATTERNS
    36.
    发明申请
    USING GENETIC ALGORITHM TO DESIGN 2-DIMENSIONAL PROCEDURAL PATTERNS 有权
    使用遗传算法设计二维程序模式

    公开(公告)号:US20150310654A1

    公开(公告)日:2015-10-29

    申请号:US14791728

    申请日:2015-07-06

    Abstract: Selection of an area of an image can be received. Selection of a subset of a plurality of predefined patterns may be received. A plurality of patterns can be generated. At least one generated pattern in the plurality of patterns may be based at least in part on one or more predefined patterns in the subset. Selection of another subset of patterns may be received. At least one pattern in the other subset of patterns may be selected from the plurality of predefined patterns and/or the generated patterns. Another plurality of patterns can be generated. At least one generated pattern in this plurality of patterns may be based at least on part on one or more patterns in the other subset. Selection of a generated pattern from the generated other plurality of patterns may be received. The selected area of the image may be populated with the selected generated pattern.

    Abstract translation: 可以接收图像的区域的选择。 可以接收多个预定模式的子集的选择。 可以生成多个图案。 多个图案中的至少一个生成的图案可以至少部分地基于该子集中的一个或多个预定模式。 可以接收另一模式子集的选择。 可以从多个预定义模式和/或生成的模式中选择模式的另一子集中的至少一个模式。 可以生成另外多个图案。 该多个图案中的至少一个生成的图案可以至少部分地基于另一子集中的一个或多个图案。 可以接收从所生成的其他多个图案中选择生成的图案。 图像的所选区域可以用所选择的生成图案填充。

    Image Cropping Suggestion
    37.
    发明申请
    Image Cropping Suggestion 有权
    图像裁剪建议

    公开(公告)号:US20150213609A1

    公开(公告)日:2015-07-30

    申请号:US14169073

    申请日:2014-01-30

    Abstract: Image cropping suggestion is described. In one or more implementations, multiple croppings of a scene are scored based on parameters that indicate visual characteristics established for visually pleasing croppings. The parameters may include a parameter that indicates composition quality of a candidate cropping, for example. The parameters may also include a parameter that indicates whether content appearing in the scene is preserved and a parameter that indicates simplicity of a boundary of a candidate cropping. Based on the scores, image croppings may be chosen, e.g., to present the chosen image croppings to a user for selection. To choose the croppings, they may be ranked according to the score and chosen such that consecutively ranked croppings are not chosen. Alternately or in addition, image croppings may be chosen that are visually different according to scores which indicate those croppings have different visual characteristics.

    Abstract translation: 描述了图像裁剪建议。 在一个或多个实现中,基于指示为视觉上令人满意的裁剪而建立的视觉特征的参数对场景进行多次裁剪。 参数可以包括例如表示候选裁剪的组合质量的参数。 参数还可以包括指示是否保存出现在场景中的内容的参数以及指示候选裁剪边界的简单性的参数。 基于分数,可以选择图像裁切,例如,将所选择的图像裁切呈现给用户进行选择。 要选择裁剪,可以根据分数进行排序,并选择不选择连续排序的裁剪。 或者或另外,可以根据指示这些裁剪具有不同视觉特征的分数在视觉上不同地选择图像裁切。

    COMBINED COMPOSITION AND CHANGE-BASED MODELS FOR IMAGE CROPPING
    38.
    发明申请
    COMBINED COMPOSITION AND CHANGE-BASED MODELS FOR IMAGE CROPPING 有权
    组合和组合变化的图像编制模型

    公开(公告)号:US20150116350A1

    公开(公告)日:2015-04-30

    申请号:US14062751

    申请日:2013-10-24

    CPC classification number: G06T11/60 G06T3/0012 G06T2207/20132

    Abstract: In techniques of combined composition and change-based models for image cropping, a composition application is implemented to apply one or more image composition modules of a learned composition model to evaluate multiple composition regions of an image. The learned composition model can determine one or more cropped images from the image based on the applied image composition modules, and evaluate a composition of the cropped images and a validity of change from the image to the cropped images. The image composition modules of the learned composition model include a salient regions module that iteratively determines salient image regions of the image, and include a foreground detection module that determines foreground regions of the image. The image composition modules also include one or more imaging models that reduce a number of the composition regions of the image to facilitate determining the cropped images from the image.

    Abstract translation: 在用于图像裁剪的组合和基于变化的组合模型的技术中,实施组合应用以应用学习的组合模型的一个或多个图像组合模块来评估图像的多个组合区域。 所学习的构图模型可以基于所应用的图像组合模块从图像中确定一个或多个裁剪图像,并且评估裁剪图像的组成以及从图像到裁剪图像的变化的有效性。 所学习的构图模型的图像合成模块包括迭代地确定图像的显着图像区域的显着区域模块,并且包括确定图像的前景区域的前景检测模块。 图像合成模块还包括减少图像的合成区域的数量的一个或多个成像模型,以便于从图像确定裁剪的图像。

    Distance metric for image comparison
    39.
    发明授权
    Distance metric for image comparison 有权
    图像比较距离度量

    公开(公告)号:US08989505B2

    公开(公告)日:2015-03-24

    申请号:US13713729

    申请日:2012-12-13

    CPC classification number: G06K9/6202 G06K9/48 G06K9/6215

    Abstract: Systems and methods are provided for generating a distance metric. An image manipulation application receives first and second input images. The image manipulation application generates first and second sets of points corresponding to respective edges of a first object in the first input image and a second object in the second input image. The image manipulation application determines costs of arcs connecting each point from the first set to each point of the second set based on point descriptors for each point of each arc. The image manipulation application determines a minimum set of costs between the first set and the second set that includes a cost of each arc connecting each point of the second set to a point in the first set. The image manipulation application obtains, based at least in part on the minimum set of costs, a distance metric for first and second input images.

    Abstract translation: 提供了用于产生距离度量的系统和方法。 图像处理应用接收第一和第二输入图像。 图像处理应用产生与第一输入图像中的第一对象的相应边缘相对应的第一和第二组点,以及第二输入图像中的第二对象。 图像处理应用程序确定基于每个弧的每个点的点描述符将每个点从第一组连接到第二组的每个点的弧的成本。 图像处理应用程序确定第一组和第二组之间的最小成本集合,其包括将第二组的每个点连接到第一组中的点的每个弧的成本。 图像处理应用至少部分地基于最小成本集获得第一和第二输入图像的距离度量。

    Method for using deep learning for facilitating real-time view switching and video editing on computing devices

    公开(公告)号:US10257436B1

    公开(公告)日:2019-04-09

    申请号:US15730632

    申请日:2017-10-11

    Abstract: Various embodiments describe view switching of video on a computing device. In an example, a video processing application receives a stream of video data. The video processing application renders a major view on a display of the computing device. The major view presents a video from the stream of video data. The video processing application inputs the stream of video data to a deep learning system and receives back information that identifies a cropped video from the video based on a composition score of the cropped video, while the video is presented in the major view. The composition score is generated by the deep learning system. The video processing application renders a sub-view on a display of the device, the sub-view presenting the cropped video. The video processing application renders the cropped video in the major view based on a user interaction with the sub-view.

Patent Agency Ranking