Abstract:
Image cropping suggestion using multiple saliency maps is described. In one or more implementations, component scores, indicative of visual characteristics established for visually-pleasing croppings, are computed for candidate image croppings using multiple different saliency maps. The visual characteristics on which a candidate image cropping is scored may be indicative of its composition quality, an extent to which it preserves content appearing in the scene, and a simplicity of its boundary. Based on the component scores, the croppings may be ranked with regard to each of the visual characteristics. The rankings may be used to cluster the candidate croppings into groups of similar croppings, such that croppings in a group are different by less than a threshold amount and croppings in different groups are different by at least the threshold amount. Based on the clustering, croppings may then be chosen, e.g., to present them to a user for selection.
Abstract:
Content creation collection and navigation techniques and systems are described. In one example, a representative image is used by a content sharing service to interact with a collection of images provided as part of a search result. In another example, a user interface image navigation control is configured to support user navigation through images based on one or more metrics. In a further example, a user interface image navigation control is configured to support user navigation through images based on one or more metrics identified for an object selected from the image. In yet another example, collections of images are leveraged as part of content creation. In another example, data obtained from a content sharing service is leveraged to indicate suitability of images of a user for licensing as part of the service.
Abstract:
Content creation collection and navigation techniques and systems are described. In one example, a representative image is used by a content sharing service to interact with a collection of images provided as part of a search result. In another example, a user interface image navigation control is configured to support user navigation through images based on one or more metrics. In a further example, a user interface image navigation control is configured to support user navigation through images based on one or more metrics identified for an object selected from the image. In yet another example, collections of images are leveraged as part of content creation. In another example, data obtained from a content sharing service is leveraged to indicate suitability of images of a user for licensing as part of the service.
Abstract:
Neural network image curation techniques are described. In one or more implementations, curation is controlled of images that represent a repository of images. A plurality of images of the repository are curated by one or more computing devices to select representative images of the repository. The curation includes calculating a score based on image and face aesthetics, jointly, for each of the plurality of images through processing by a neural network, ranking the plurality of images based on respective said scores, and selecting one or more of the plurality of images as one of the representative images of the repository based on the ranking and a determination that the one or more said images are not visually similar to images that have already been selected as one of the representative images of the repository.
Abstract:
In techniques for iterative saliency map estimation, a salient regions module applies a saliency estimation technique to compute a saliency map of an image that includes image regions. A salient image region of the image is determined from the saliency map, and an image region that corresponds to the salient image region is removed from the image. The salient regions module then iteratively determines subsequent salient image regions of the image utilizing the saliency estimation technique to recompute the saliency map of the image with the image region removed, and removes the image regions that correspond to the subsequent salient image regions from the image. The salient image regions of the image are iteratively determined until no salient image regions are detected in the image, and a salient features map is generated that includes each of the salient image regions determined iteratively and combined to generate the final saliency map.
Abstract:
Selection of an area of an image can be received. Selection of a subset of a plurality of predefined patterns may be received. A plurality of patterns can be generated. At least one generated pattern in the plurality of patterns may be based at least in part on one or more predefined patterns in the subset. Selection of another subset of patterns may be received. At least one pattern in the other subset of patterns may be selected from the plurality of predefined patterns and/or the generated patterns. Another plurality of patterns can be generated. At least one generated pattern in this plurality of patterns may be based at least on part on one or more patterns in the other subset. Selection of a generated pattern from the generated other plurality of patterns may be received. The selected area of the image may be populated with the selected generated pattern.
Abstract:
Image cropping suggestion is described. In one or more implementations, multiple croppings of a scene are scored based on parameters that indicate visual characteristics established for visually pleasing croppings. The parameters may include a parameter that indicates composition quality of a candidate cropping, for example. The parameters may also include a parameter that indicates whether content appearing in the scene is preserved and a parameter that indicates simplicity of a boundary of a candidate cropping. Based on the scores, image croppings may be chosen, e.g., to present the chosen image croppings to a user for selection. To choose the croppings, they may be ranked according to the score and chosen such that consecutively ranked croppings are not chosen. Alternately or in addition, image croppings may be chosen that are visually different according to scores which indicate those croppings have different visual characteristics.
Abstract:
In techniques of combined composition and change-based models for image cropping, a composition application is implemented to apply one or more image composition modules of a learned composition model to evaluate multiple composition regions of an image. The learned composition model can determine one or more cropped images from the image based on the applied image composition modules, and evaluate a composition of the cropped images and a validity of change from the image to the cropped images. The image composition modules of the learned composition model include a salient regions module that iteratively determines salient image regions of the image, and include a foreground detection module that determines foreground regions of the image. The image composition modules also include one or more imaging models that reduce a number of the composition regions of the image to facilitate determining the cropped images from the image.
Abstract:
Systems and methods are provided for generating a distance metric. An image manipulation application receives first and second input images. The image manipulation application generates first and second sets of points corresponding to respective edges of a first object in the first input image and a second object in the second input image. The image manipulation application determines costs of arcs connecting each point from the first set to each point of the second set based on point descriptors for each point of each arc. The image manipulation application determines a minimum set of costs between the first set and the second set that includes a cost of each arc connecting each point of the second set to a point in the first set. The image manipulation application obtains, based at least in part on the minimum set of costs, a distance metric for first and second input images.
Abstract:
Various embodiments describe view switching of video on a computing device. In an example, a video processing application receives a stream of video data. The video processing application renders a major view on a display of the computing device. The major view presents a video from the stream of video data. The video processing application inputs the stream of video data to a deep learning system and receives back information that identifies a cropped video from the video based on a composition score of the cropped video, while the video is presented in the major view. The composition score is generated by the deep learning system. The video processing application renders a sub-view on a display of the device, the sub-view presenting the cropped video. The video processing application renders the cropped video in the major view based on a user interaction with the sub-view.