Abstract:
Methods and systems for generating a three-dimensional occlusogram are disclosed. One method includes determining a virtual three dimensional (3D) mesh model object of at least one tooth of a patient and displaying the determined virtual 3D mesh model object of at least one tooth of a patient wherein the 3D mesh model object includes a plurality of data sets associated with a set of occlusal information for the at least one tooth of the patient.
Abstract:
Orthodontic systems and related methods are disclosed for designing and providing improved or more effective tooth moving systems for eliciting a desired tooth movement and/or repositioning teeth into a desired arrangement. Methods and orthodontic systems include the generation of an overcorrection in the tooth-receiving cavities of an appliance worn in the dentition. The overcorrection may provide an improved and more accurately applied force or moment applied to a tooth. The overcorrected force or moment can move a tooth closer to a desired position than if not overcorrected as sufficient force can still applied to the tooth as it gets closer to the desired position. The overcorrected force or moment may also better target the root of the tooth where the biological response to tooth movement occurs. The overcorrection may be calculated in various ways as described herein.
Abstract:
A series of appliances including a first shell and a second shell can be designed to incrementally implement a treatment plan. The first and second shells can have cavities designed to receive teeth of a jaw. A first bite adjustment structures can be formed of a same material as the first shell, extending from the first shell and designed to interface with teeth of a second jaw. A second bite adjustment structures can be formed of a same material as the second shell, extending from the second shell and designed to interface with teeth of the second jaw. The first and the second bite adjustment structures can have respective shapes and locations specific to respective stages of the treatment plan.
Abstract:
A processing device receives a 3D model including a 3D crown component from a scan and a 3D root component from a template. The processing device receives a 2D x-ray image of the at least one tooth and generates a scan model representing an initial estimate of the one or more parameters of an x-ray imaging device that created the 2D x-ray image. The processing device further generates a 2D contour of the at least one tooth based on projecting the 3D model onto a plane using the scan model. The processing device overlays the 2D contour onto the 2D x-ray image. The processing device further adjusts the 2D contour to cause a first crown component of the 2D contour to approximately align to a second crown component of the 2D x-ray image. The processing then calibrates the scan model based on data obtained from adjusting the two-dimensional contour.
Abstract:
A processing device receives a 3D model including a 3D crown component from a scan and a 3D root component from a template. The processing device receives a 2D x-ray image of the at least one tooth and generates a scan model representing an initial estimate of the one or more parameters of an x-ray imaging device that created the 2D x-ray image. The processing device further generates a 2D contour of the at least one tooth based on projecting the 3D model onto a plane using the scan model. The processing device overlays the 2D contour onto the 2D x-ray image. The processing device further adjusts the 2D contour to cause a first crown component of the 2D contour to approximately align to a second crown component of the 2D x-ray image. The processing then calibrates the scan model based on data obtained from adjusting the two-dimensional contour.
Abstract:
Orthodontic systems and related methods are disclosed for designing and providing improved or more effective tooth moving systems for eliciting a desired tooth movement and/or repositioning teeth into a desired arrangement. Methods and orthodontic systems of the invention include tooth attachments having improved or optimized parameters selected or modified for more optimal and/or effective application of forces for a desired/selected orthodontic movement. Attachments of the present invention can be customized to a particular patient (e.g., patient-customized), a particular movement, and/or a sub-group or sub-set of patients, and configured to engage an orthodontic tooth positioning appliance worn by a patient, where engagement between the attachment and orthodontic appliance results in application of a repositioning force or series/system of forces to the tooth having the attachment and will generally elicit a tooth movement.
Abstract:
The present invention relates to systems and methods for detecting deviations from an orthodontic treatment plan. One method includes receiving a tracking model, performing a matching step between individual teeth in a plan model and the tracking model, comparing the tracking model with the plan model, and detecting one or more positional differences.
Abstract:
The present invention relates to systems and methods for detecting deviations from an orthodontic treatment plan. One method includes receiving a tracking model, performing a matching step between individual teeth in a plan model and the tracking model, comparing the tracking model with the plan model, and detecting one or more positional differences.
Abstract:
A series of appliances including a first shell and a second shell can be designed to incrementally implement a treatment plan. The first and second shells can have cavities designed to receive teeth of a jaw. A first number of bite adjustment structures can be formed of a same material as the first shell, extending therefrom and designed to interface with teeth of a second jaw. The first number of bite adjustment structures can have a first shape and location specific to a first stage of the treatment plan. A second number of bite adjustment structures can be formed of a same material as the second shell, extending therefrom and designed to interface with teeth of the second jaw. The second number of bite adjustment structures can have a second shape and location, different than the first shape and location, specific to a second stage of the treatment plan.
Abstract:
A method may include generating a comparison of one or more anatomical reference shapes and one or more surface features on a planned dentition model with a corresponding one or more anatomical reference shapes and one or more surface features on a tracking dentition model using a coarse to fine volume 3D array to represent one or both of the plan model and the tracking model to minimize distances between teeth represented in the plan model and corresponding teeth represented in the tracking model. The method may also include detecting one or more positional differences between the anatomical reference shapes and surface features of the plan model and the corresponding anatomical reference shapes and surface features of the tracking model based on the comparison and generating a modified treatment plan based on the one or more detected positional differences.