Abstract:
An electronic device such as a wristwatch may be provided with a phased antenna array for conveying first signals at a first frequency between 10 GHz and 300 GHz and a non-millimeter wave antenna for conveying second signals at a second frequency below 10 GHz. The device may include conductive housing sidewalls and a display. Conductive structures in the display and the conductive housing sidewalls may define a slot element in the non-millimeter wave antenna. The phased antenna array may be mounted within the slot element, aligned with a spatial filter in the display, or aligned with a dielectric window in the conductive housing sidewalls. Control circuitry may process signals transmitted by the phased antenna array and a reflected version of the transmitted signals that has been received by the phased antenna array to detect a range between the device and an external object.
Abstract:
An electronic device such as a wristwatch may have a housing with metal sidewalls and a display having conductive display structures. The display structures may be separated from the sidewalls by a slot for an antenna that runs around the display module. A conductive interconnect may be coupled between the sidewalls and the display structures. A feed and tuning element may be coupled between the display structures and the sidewalls. A first length of the slot from the interconnect to the tuning element may radiate in a satellite band and a cellular band. A second length of the slot from the interconnect to the feed may radiate in a 2.4 GHz band. Harmonics of the second length may radiate in bands at and above 5.0 GHz. If desired, the tuning element may be omitted, and the antenna may be coupled to separate low band and high band matching circuits.
Abstract:
An electronic device such as a wristwatch may have a housing with metal sidewalls and a display having conductive display structures. The display structures may be separated from the sidewalls by a slot for an antenna that runs around the display module. A conductive interconnect may be coupled between the sidewalls and the display structures. A feed and tuning element may be coupled between the display structures and the sidewalls. A first length of the slot from the interconnect to the tuning element may radiate in a satellite band and a cellular band. A second length of the slot from the interconnect to the feed may radiate in a 2.4 GHz band. Harmonics of the second length may radiate in bands at and above 5.0 GHz. If desired clip and blade structures may form conductive paths for coupling antenna elements.
Abstract:
An electronic device such as a wristwatch may have a housing with metal portions such as metal sidewalls. The housing may form an antenna ground for an antenna. An antenna resonating element for the antenna may be formed from a stack of capacitively coupled component layers such as a display layer, touch sensor layer, and near-field communications antenna layer at a front face of the device. An additional antenna may be formed from a peripheral resonating element that runs along a peripheral edge of the device and the antenna ground. A rear face antenna may be formed using a wireless power receiving coil as a radio-frequency antenna resonating element or may be formed from metal antenna traces on a plastic support for light-based components.
Abstract:
Embodiments disclosed herein describe a wireless power receiving system for an electronic device includes: a first inductor coil configured to receive power primarily at a first frequency and from magnetic fields propagating in a first direction; and a second inductor coil configured to receive power primarily at a second frequency and from magnetic fields propagating in a second direction, wherein the first frequency is different than the second frequency.
Abstract:
An electronic device such as a wristwatch may have a housing with metal sidewalls and a display having conductive display structures. Printed circuits having corresponding ground traces may be coupled to the display for conveying data to and/or from the display. The conductive display structures may be separated from the metal sidewalls by a gap. A conductive interconnect may be coupled to the metal sidewalls and may extend across the gap to the conductive display structures. The conductive interconnect may be coupled to the ground traces on the printed circuits and/or may be shorted or capacitively coupled to the conductive display structures. When configured in this way, the metal sidewalls, the conductive display structures, and the conductive interconnect may define the edges of a slot antenna resonating element for a slot antenna.
Abstract:
A housing for an electronic device is disclosed. The housing includes a first conductive component defining a first interface surface, a second conductive component defining a second interface surface facing the first interface surface, and a joint structure between the first and second interface surfaces. The joint structure includes a molded element forming a portion of an exterior surface of the housing, and a sealing member forming a watertight seal between the first and second conductive components. Methods of forming the electronic device housing are also disclosed.
Abstract:
Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include a dual arm inverted-F antenna resonating element and an antenna ground. An antenna feed may be coupled between the inverted-F antenna resonating element and the antenna ground. An adjustable component such as an adjustable inductor may be coupled between the inverted-F antenna resonating element and the antenna ground in parallel with the antenna feed. The adjustable component may be operable in multiple states such as an open circuit state, a short circuit state, and a state in which the adjustable component exhibits a non-zero inductance. Antenna bandwidth can be broadened by coupling a loop antenna resonating element across the antenna feed. A portion of the antenna ground may overlap the loop antenna resonating element to further enhance antenna bandwidth.
Abstract:
Electronic devices may include antenna structures. The antenna structures may form an antenna having first and second feeds at different locations. A first transceiver may be coupled to the first feed using a first circuit. A second transceiver may be coupled to the second feed using a second circuit. The first and second feeds may be isolated from each other using the first and second circuits. The second circuit may have a notch filter that isolates the second feed from the first feed at operating frequencies associated with the first transceiver. The first circuit may include an adjustable component such as an adjustable capacitor. The adjustable component may be placed in different states depending on the mode of operation of the second transceiver to ensure that the first feed is isolated from the second feed.
Abstract:
A manufacturing system for assembling wireless electronic devices is provided. The manufacturing system may include test stations for testing the radio-frequency performance of components that are to be assembled within the electronic devices. A reference test station may be calibrated using calibration coupons having known radio-frequency characteristics. The calibration coupons may include transmission line structures. The reference test station may measure verification standards to establish baseline measurement data. The verification standards may include circuitry having electrical components with given impedance values. Many verification coupons may be measured to enable testing for a wide range of impedance values. Test stations in the manufacturing system may subsequently measure the verification standards to generate test measurement data. The test measurement data may be compared to the baseline measurement data to characterize the performance of the test stations to ensure consistent test measurements across the test stations.