Abstract:
An electronic device may have control circuitry that uses a reflectometer to measure antenna impedance during operation. The reflectometer may have a directional coupler that is coupled between radio-frequency transceiver circuitry and an antenna. A calibration circuit may be coupled between the directional coupler and the antenna. The calibration circuit may have a first port coupled to the antenna, a second port coupled to the directional coupler, and a third port that is coupled to a calibration resistance. The reflectometer may have terminations of identical impedance that are coupled to ground. Switching circuitry in the reflectometer may be used to route signals from the directional coupler to a feedback receiver for measurement by the control circuitry or to ground through the terminations. Calibrated antenna reflection coefficient measurements may be used in dynamically adjusting the antenna.
Abstract:
Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 10 and a second test antenna. Test signals conveyed through the second test antenna may be used in obtaining signal interference level measurements.
Abstract:
Obstruction detecting logic may execute touch-sensing algorithms on the electronic device, which may detect when a user is gripping the electronic device from the side, when the fingers or hand of the user is on the edge of the electronic device, when the user is using one or more fingers to touch the electronic device, and may determine thumb and finger orientation. Using the touch-sensing methods, it may be determined which antennas are obstructed. To mitigate negative antenna performance due to the determined obstruction, one or more compensation actions may be taken. The touch-sensing algorithms may estimate user thumb/finger orientation and velocity, which may be used to predict future antenna occlusion (e.g., if the hand of the user is in motion).
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more dual-frequency dual-polarization patch antennas. Each patch antenna may have a patch antenna resonating element that lies in a plane and a ground that lies in a different parallel plane. The patch antenna resonating element may have a first feed located along a first central axis and a second feed located along a second central axis that is perpendicular to the first central axis. The patch antenna resonating element may be rectangular, may be oval, or may have other shapes. A shorting pin may be located at an intersecting point between the first and second axes. The patch antennas may be used in beam steering arrays. The patch antennas may be used for wireless power transfer at microwave frequencies or other frequencies and may be used to support millimeter wave communications.
Abstract:
An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing that are separated from a round by an elongated opening. The electronic device may have a central longitudinal axis that divides the antenna resonating element arm and other antenna structures into symmetrical halves that exhibit mirror symmetry with respect to the central longitudinal axis. The antenna structures may include symmetrical slot antenna resonating elements on opposing sides of the central longitudinal axis. Electrical components such as switches and antenna tuning inductors may be coupled to the antenna structures in a configuration that is symmetrical with respect to the central longitudinal axis. The electrical components may be used to place the antenna structures in an unflipped configuration or in a symmetrical flipped configuration.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include wireless transceiver circuitry that transmits signals towards an antenna. A signal path may carry the transmitted signals to the antenna. Reflected signals from the antenna may be carried along the signal path towards the transceiver circuitry. Coupler circuitry may include a forward coupler that taps the transmitted signals, a first reverse coupler that taps the reflected signals from the antenna, and a second reverse coupler that taps the reflected signals that have passed through the first reverse coupler. Analog processing circuitry and digital processing circuitry may be used to produce an impedance measurement from the tapped signals from the coupler circuitry. The analog processing circuitry may include analog signal mixers, low pass filters, and analog-to-digital converter circuitry.
Abstract:
An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from peripheral conductive structures running along the edges of a device housing that are separated from a round by an elongated opening. The electronic device may have a central longitudinal axis that divides the antenna resonating element arm and other antenna structures into symmetrical halves that exhibit mirror symmetry with respect to the central longitudinal axis. The antenna structures may include symmetrical slot antenna resonating elements on opposing sides of the central longitudinal axis. Electrical components such as switches and antenna tuning inductors may be coupled to the antenna structures in a configuration that is symmetrical with respect to the central longitudinal axis. The electrical components may be used to place the antenna structures in an unflipped configuration or in a symmetrical flipped configuration.
Abstract:
An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include antennas that are tuned, adjustable impedance matching circuitry, antenna port selection circuitry, and adjustable transceiver circuitry. Wireless circuit adjustments may be made by ascertaining a current usage scenario for the electronic device based on sensor data, information from cellular base station equipment or other external equipment, signal-to-noise ratio information or other signal information, antenna impedance measurements, and other information about the operation of the electronic device.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. An antenna may have an antenna feed that is coupled to a radio-frequency transceiver with a transmission line. An impedance matching circuit may be coupled to the antenna feed to match the impedance of the transmission line and the antenna. The impedance matching circuit and tunable circuitry in the antenna may be formed using integrated circuits. Each integrated circuit may include switching circuitry that is used in switching components such as inductors and capacitors into use. Sensors such as temperature sensors, current and voltage sensors, power sensors, and impedance sensors may be integrated into the integrated circuits. Each integrated circuit may store settings for the switching circuitry and may include communications and control circuitry for communicating with external circuits and processing sensor data.
Abstract:
An electronic device may be provided with wireless circuitry. An application processor may generate wireless data that is to be transmitted using the wireless circuitry and may process wireless data that has been received using the wireless circuitry. The wireless circuitry may include multiple baseband processors, multiple associated radios, and front-end module and antenna circuitry. Sensors may be used to provide the application processor with sensor data. During operation, the application processor and the baseband processors may be used to transmit and receive wireless communications traffic. A multiradio controller integrated circuit that does not transmit or receive the wireless communications traffic may be used in controlling the wireless circuitry based on impedance measurements, sensor data, and other information.