摘要:
A system and method are provided for displaying images to an aircrew member of an aircraft during approach to a runway. Synthetic approach texture objects for the runway are modified and displayed in accordance with current coordinates, altitude, and speed of the aircraft. The approach texture objects are identical, regularly spaced objects each having a surface forming a plane parallel to the runway.
摘要:
A display system for use on a vehicle is presented. The display system comprises a cursor control device, at least one electronic display for displaying a first image comprising a three-dimensional conformal view of a terrain and a first movable cursor, and a processor that is coupled to the cursor control device and the at least one electronic display. The processor is configured to move the first movable cursor on the first image in response to input from the cursor control device and to determine a latitude and longitude that correspond to the position of the first movable cursor.
摘要:
A system for displaying first and second images to a pilot of an aircraft includes, but is not limited to, a sensor subsystem that detects a light transmission originating from outside the aircraft and generates a first signal indicative of the light transmission, a dynamic condition sensor that detects a dynamic condition of the aircraft and generates a second signal indicative of the dynamic condition of the aircraft, a display unit, and a processor that is communicatively coupled to the sensor subsystem and to the dynamic condition sensor and operatively coupled to the display unit. The processor is configured to command the display unit to display a first image corresponding to the first signal, to display a second image overlaid over the first image corresponding to the second signal, and to modify the appearance of the second image to enhance the pilot's ability to discern the first image.
摘要:
A method of displaying information on a display element is provided. The display element may be deployed in a vehicle such as an aircraft. The method obtains range data for objects located in a sensing region at a sampling time, and obtains image data corresponding to an image of the sensing region at the sampling time. The method continues by deriving first graphics content from the range data, and by deriving second graphics content from the image data. The first graphics content is correlated with the second graphics content such that they are spatially and temporally aligned with one another. Then, the correlated graphics content is rendered on the display element.
摘要:
A flight deck display system for an aircraft or other vehicle includes a first data source of visual feature data that is indicative of visual features of a location of interest, a second data source of flight data for the aircraft, a processor architecture, and a display element. The processor architecture is operatively coupled to the first data source and to the second data source, and it is configured to process the visual feature data, process the flight data, and, based upon the visual feature data and the flight data, generate image rendering display commands. The display element receives the image rendering display commands and, in response thereto, renders a dynamic graphical representation of the location of interest using the visual feature data. The dynamic graphical representation of the location conveys an amount of visible detail that varies as a function of the flight data.
摘要:
A display system is provided for a vehicle. The system includes a processor configured to receive data representative of landing information and navigation and control information and to supply display commands associated with the landing information and navigation and control information; and a display device coupled the processor for receiving the display commands and operable to render a three-dimensional view, including first symbology representing the landing information and second symbology representing the navigation and control information. The second symbology is superimposed on the first symbology.
摘要:
An aircrew situational awareness while taxiing is enhanced by blossoming a displayed landmark related to the current taxiway from a first format to a second format as the aircraft approaches the landmark.
摘要:
A display system and method for a vehicle are provided. The display system includes a processor configured to receive data representative of a waypoint and terrain and to supply display commands associated with the waypoint and the terrain; and a display device coupled the processor for receiving the display commands and operable to render three-dimensional terrain and a first symbol elevated from the terrain representing the waypoint.
摘要:
Systems and methods are provided for displaying information on a display device associated with an aircraft. A method comprises rendering a perspective view of terrain on a display device and obtaining sensor data for a sensing region overlapping at least a portion of the viewing region. The method further comprises obtaining tracking data associated with a first object located within the sensing region and correlating a first portion of the sensor data that corresponds to the first object with the tracking data. The method further comprises rendering a graphical representation of the first object on the display device, wherein positioning of the graphical representation of the first object with respect to the terrain is influenced by the correlation with first portion of the sensor data.
摘要:
A system for displaying first and second images to a pilot of an aircraft includes, but is not limited to, a sensor subsystem that detects a light transmission originating from outside the aircraft and generates a first signal indicative of the light transmission, a dynamic condition sensor that detects a dynamic condition of the aircraft and generates a second signal indicative of the dynamic condition of the aircraft, a display unit, and a processor that is communicatively coupled to the sensor subsystem and to the dynamic condition sensor and operatively coupled to the display unit. The processor is configured to command the display unit to display a first image corresponding to the first signal, to display a second image overlaid over the first image corresponding to the second signal, and to modify the appearance of the second image to enhance the pilot's ability to discern the first image.