Abstract:
Methods and systems for controlling the moisture content of biodegradable and bioresorbable polymer resin during extrusion above a lower limit that allows for plasticization of the polymer resin melt and below an upper limit to reduce or prevent molecular weight loss are disclosed. Methods are further disclosed involving plasticization of a polymer resin for feeding into an extruder with carbon dioxide and freon.
Abstract:
A scaffold is formed by several segments joined or connected to each other by only at least one coupling. The coupling decouples the segments in the axial direction over a finite distance of axial displacement. The scaffold when implanted in a peripheral vessel reduces loading on rings of a segment due to the decoupling of the segments in the axial direction over the finite distance.
Abstract:
A scaffold includes a radiopaque marker connected to a strut. The marker is retained within the strut by one or more of a mechanical interference fit, a polymer coating or melt, and/or by friction. The marker can take the form of a bead, rivet or snap-in marker, or a tube deformed when attached to the strut. The strut is made from a tube. The strut has a thickness of about 100 microns.
Abstract:
A scaffold strut is shaped to improve hemocompatibility. After laser cutting, the scaffold is placed on a work piece and its struts are shaped by flame polishing or brushing. The abluminal surfaces and luminal surfaces can have corners rounded. The strut can have a sloped surface on its luminal side without reducing strut thickness needed for strength.
Abstract:
Disclosed herein are drug delivery medical devices. A polymer coating for a medical device is provided which comprises a minimum amount of a drug bonded to the polymer in the coating.
Abstract:
A therapeutic agent delivery system formed of a specific type of poly(ester amide) (PEA), a therapeutic agent, and a water miscible solvent is described herein. A method of delivering the therapeutic agent delivery system by delivering the therapeutic agent delivery system formed of a PEA polymer, a therapeutic agent, and a water miscible solvent to a physiological environment and separating the phase of the therapeutic agent delivery system to form a membrane from the polymer to contain the therapeutic agent within the physiological environment is also described. Additionally disclosed is a kit including a syringe and a therapeutic agent delivery system within the syringe.
Abstract:
An implantable prosthesis can comprise a strut having a lumen, radiopaque particles within the lumen, and a polymer binder. The polymer binder retains the radiopaque particles within the lumen. The strut may have side holes through which a therapeutic agent may pass and through which the radiopaque particles are incapable of passing. The polymer binder may be absent or optional. The radiopaque particles can have sizes that prevent them from escaping out of the lumen through the side holes. The radiopaque particles placed within the lumen can improve visualization of the prosthesis during an implantation procedure.
Abstract:
A scaffold strut is shaped to improve hemocompatibility. After laser cutting, the scaffold is placed on a work piece and its struts are shaped by flame polishing or brushing. The abluminal surfaces and luminal surfaces can have corners rounded. The strut can have a sloped surface on its luminal side without reducing strut thickness needed for strength.
Abstract:
An implantable prosthesis can comprise a strut having a lumen, radiopaque particles within the lumen, and a polymer binder. The polymer binder retains the radiopaque particles within the lumen. The strut may have side holes through which a therapeutic agent may pass and through which the radiopaque particles are incapable of passing. The polymer binder may be absent or optional. The radiopaque particles can have sizes that prevent them from escaping out of the lumen through the side holes. The radiopaque particles placed within the lumen can improve visualization of the prosthesis during an implantation procedure.
Abstract:
Methods and systems for controlling the moisture content of biodegradable and bioresorbable polymer resin during extrusion above a lower limit that allows for plasticization of the polymer resin melt and below an upper limit to reduce or prevent molecular weight loss are disclosed. Methods are further disclosed involving plasticization of a polymer resin for feeding into an extruder with carbon dioxide and freon.