摘要:
A first wireless communications device includes a wide area network (WAN) interface and a peer to peer interface. The first device discovers the presence of a second wireless communications device via a peer discovery signal, received via its peer to peer interface. The second device has been transmitting, e.g., periodically, certain information, e.g., its location and/or shopping preferences, to a node within the WAN. The detected first signal triggers an application alert in the first device. The first device recovers past information about the second device through a second signal received via its WAN interface. The first device uses information communicated in the first signal, e.g., device identifier information, and information communicated in the second signal, e.g., past location and/or shopping information, to generate a targeted message for the second device. The first device communicates the targeted message via its peer to peer interface in a peer to peer traffic channel.
摘要:
One feature provides for establishing an ad hoc peer-to-peer network over an existing channel allocation for another network. To mitigate interference between multiple peer-to-peer devices, a plurality of receiver chains in a receiver device may be configured with beamforming coefficients so as to focus reception in the direction of an intended signal from a transmitter device while minimizing reception from other directions. Similarly, the receiver device may also use a plurality of antennas and a transmitter chain to beamform in the direction of the transmitter device, thereby focusing its transmission toward the transmitter device. The receiver device may also notify nearby devices that it is employing a plurality of receive antennas. This information can be used by the nearby devices to more intelligently perform transmitter yielding. By utilizing beamforming information to make the transmitter and/or receiver yielding decision, better interference mitigation may be achieved.
摘要:
Methods and apparatus well suited for efficiently communicating small amounts of information relatively frequently in a wireless communications system are described. An uplink timing frequency structure for an access point includes a set of dedicated uplink communications resources, e.g., expression advertisement interval air link resources. Different ones of the set of dedicated uplink communications resources correspond to different individual wireless communications devices currently registered with the access point. In the downlink timing frequency structure for the access point there are dedicated downlink broadcast communications resources, e.g., expression broadcast interval air link resources and neighbor expression broadcast interval air link resources. Information received on dedicated uplink air link resources is echoed back or selectively echoed back on the dedicated downlink air link resources. Wireless communications devices monitor downlink dedicated air link resources to recover expression information being communicated by other wireless communications devices in its local vicinity.
摘要:
Methods and apparatus supporting enhanced discovery operations in peer to peer networks are described. Peer discovery, based on direct peer to peer discovery between two mobile nodes can be somewhat limited, e.g., due to power limitations, processing power, and/or channel conditions. An access point, e.g., base station, monitors for and receives peer discovery signals conveying a set of identifiers from a wireless communications device. The access point retransmits at least one identifier in the set in a wireless peer to peer communications channel. Thus the access point effectively extends the peer discovery range for wireless communications devices utilizing the peer to peer network. Wireless communications devices can monitor for and recover the rebroadcast peer discovery signals from access points. Thus, via access point signaling a wireless communications device can be made situationally aware of other devices of interest which would be otherwise outside its discovery detection range.
摘要:
Systems and methodologies are described that facilitate sharing bandwidth between a wide area network and a local area peer-to-peer network. The peer-to-peer network may use an air interface technology that is similar to distinct from an air interface technology use din the wide area network. Moreover, the wide area network and the local area peer-to-peer network may utilize distinct sets of parameters. For example, if the wide area network and the peer-to-peer network use OFDM-based air interface technologies, parameters such as tone spacing, symbol time, cyclic prefix, and the like of the two networks may vary. Further, peer-to-peer parameters may be a function of parameters for the wide area network.
摘要:
Methods and apparatus for efficiently communicating small amounts of information relatively frequently in a wireless communications system are described. An access point's uplink timing frequency structure includes a set of dedicated uplink communications resources, e.g., expression advertisement interval air link resources, which may be in addition to regular traffic channel resources. The set of dedicated uplink communications resources comprises a small fraction of the total uplink communications resources. An individual one of the set of dedicated uplink communications resources can carry a small amount of information bits. An expression advertisement interval occurs relatively frequently. A wireless communications device, registered with the access point, is allocated one of the set of dedicated uplink resources. The wireless communications device can transmit information using its allocated resource in both a sleep state and an active state.
摘要:
Methods and apparatus well suited for supporting communications over different ranges in, for example, a peer to peer wireless communications system, are described. In the peer to peer network at least some of the types of signals, e.g., peer discovery signals and/or paging signals, are transmitted with no closed loop power control. An exemplary peer to peer timing structure includes air link resources allocated for a particular type of signaling in which the resources are segmented into multiple blocks which do not overlap in time, different ones of the multiple blocks being associated with different ranges. The characteristics of the basic transmission units of the multiple blocks based on range are different, e.g., tone size and symbol width are different. A wireless communications device implements the peer to peer timing structure and uses resources from different range based blocks at different times. Data traffic transmission units may be the same regardless of the range.
摘要:
Techniques for transmitting signals using time hopping or time and frequency hopping are described. In one design, a terminal selects different slots to use for transmission in multiple frames with time hopping. Each frame includes multiple slots, and each slot covers a particular time duration. The selected slots are at different time locations in the multiple frames. In another design, a terminal selects different resource units to use for transmission in multiple frames with time and frequency hopping. The selected resource units are at different time and frequency locations in the multiple frames. For both designs, the terminal sends a signal (e.g., a peer discovery signal) in the selected slots or resource units in the multiple frames. The terminal may detect for signals (e.g., peer discovery signals) from other terminals in slots not used for transmission by the terminal.
摘要:
Methods and apparatus for increasing power efficiency and decreasing latency of communication of a mobile device operating in an unlicensed spectrum using global timing data are disclosed. The method includes receiving, at the mobile device, the global timing data from an external timing source, the mobile device communicating in the unlicensed spectrum, obtaining, at the mobile device, a time from the global timing data, and determining, at the mobile device, a wake time to switch the mobile device from a sleep state to an active state based on the time obtained from the global timing data.
摘要:
Methods and apparatus for communicating the location of a mobile wireless communications device are described. Codewords, e.g., values or sets of bits, are selected from a codebook mapping different codewords to corresponding pieces of location information. In a first approach location information is communicated by using codewords from different codebooks with the product, e.g., intersection of location information provided by the codewords, providing relatively detailed location information using relatively few bits. In a second approach user specific codebooks are defined for individual users. The codewords in the codebook corresponding to a particular user map to locations the individual specific user is likely to frequent. In another approach codewords are transmitted at different power levels and/or using different coding rates. Received codewords corresponding to a device may be used in combination to determine the location or refine the understanding of the device location.