Abstract:
A sensor includes a detector configured to sense a parameter, at least one test circuit configured to detect a respective fault condition of the sensor and generate a fault signal in response to detecting the fault condition, a checker configured to test the at least one test circuit to determine the operational status of the at least one test circuit, and an output signal generator, coupled to receive the sensed parameter, the fault signal, and the operational status of the at least one test circuit. The output signal generator is configured to generate an output signal of the sensor to communicate the sensed parameter and the operational status of the at least one test circuit.
Abstract:
A monitor circuit for monitoring a level of a first and second regulated source may monitor a voltage level of regulated voltages or a current level of regulated currents. In an embodiment, the monitor circuit includes circuitry responsive to a first regulated current and to a second regulated current. A first circuit responsive to the first regulated current and to the second regulated current generates a first error signal indicative of at least one of an overcurrent condition of the first regulated current and an undercurrent condition of the second regulated current. A second circuit responsive to the first regulated current and to the second regulated current generates a second error signal indicative of at least one of an undercurrent condition of the first regulated current and an overcurrent condition of the second regulated current. A method for monitoring the levels of first and second regulated sources is also provided.
Abstract:
In one aspect, an integrated circuit (IC) includes a magnetic field sensor to detect speed and direction of angular rotation of a rotating magnetic structure. The magnetic field sensor includes at least two magnetic field sensing elements configured to sense changes in a magnetic field caused by rotation of the magnetic structure. The IC also includes an output port configured to provide an output signal of the magnetic field sensor. The output signal indicates the speed and one of the direction or a fault.
Abstract:
In one aspect, an integrated circuit (IC) includes a magnetic field sensor to detect speed and direction of angular rotation of a rotating magnetic structure. The magnetic field sensor includes at least two magnetic field sensing elements configured to sense changes in a magnetic field caused by rotation of the magnetic structure. The IC also includes an output port configured to provide an output signal of the magnetic field sensor. A duty cycle percentage of the output signal indicates the speed and the direction or indicates a fault.
Abstract:
A monitor circuit for monitoring a level of a first and second regulated source may monitor a voltage level of regulated voltages or a current level of regulated currents. In an embodiment, the monitor circuit includes circuitry responsive to a first regulated voltage and to a second regulated voltage. A first circuit responsive to the first regulated voltage and to the second regulated voltage generates a first error signal indicative of at least one of an overvoltage condition of the first regulated voltage and an undervoltage condition of the second regulated voltage. A second circuit responsive to the first regulated voltage and to the second regulated voltage generates a second error signal indicative of at least one of an undervoltage condition of the first regulated voltage and an overvoltage condition of the second regulated voltage. A method for monitoring the levels of first and second regulated sources is also provided.
Abstract:
A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead. Also described is a coil secured to the non-conductive mold material and a lead having at least two separated portions with a passive component coupled across the two portions.
Abstract:
A circuit includes a current source having at least first terminal and a second, control terminal. The current source is configured to receive a current control signal at the control terminal and in response thereto generates a first current signal at the first terminal. The current control signal controls a current level of the first current signal. The circuit also includes at least one sensing element responsive to one or more sense parameters and having an input adapted to couple to the first terminal of said current source. The sensing element is configured to receive one or more current signals comprising at least the first current signal and in response thereto generates a sensed output signal at an output thereof. A corresponding method for operating the circuit is also provided.
Abstract:
Systems, methods, and apparatuses for magnetic field sensors with self-test include a detection circuit to detect speed and direction of a target. One or more circuits to test accuracy of the detected speed and direction may be included. One or more circuits to test accuracy of an oscillator may also be included. One or more circuits to test the accuracy of an analog-to-digital converter may also be included. Additionally, one or more IDDQ and/or built-in-self test (BIST) circuits may be included.
Abstract:
An apparatus and a method provide an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object capable of rotating. A variety of signal formats of the output signal are described.