Abstract:
A magnetic field sensor with enhanced immunity to external magnetic interference is presented. Included is a magnetic field signal generator and a demodulator. The magnetic field signal generator produces a magnetic field signal having a modulated signal portion in a first frequency band based on a sensed modulated AC bias magnetic field. The modulated AC bias magnetic field is produced by movement of ferromagnetic target relative to a bias coil when an AC signal is applied to the bias coil. When the magnetic field signal also includes an unwanted signal portion in a second frequency band based on external magnetic interference, demodulation performed by the demodulator results in the modulated signal portion being shifted from the first frequency band to a third frequency band and the unwanted signal portion being shifted to the first frequency band. The bias coil may be provided as part of the magnetic field sensor.
Abstract:
In one aspect, a magnetic field sensor is configured to detect a ferromagnetic object. The magnetic field sensor includes a magnet that includes two North regions and two South regions configured to generate opposing directions of magnetization to form a magnetic flux. The magnetic field sensor also includes a magnetic field sensing element configured to generate an is output signal responsive to changes in the magnetic flux caused by movement of the ferromagnetic object.
Abstract:
A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead. Also described is a coil secured to the non-conductive mold material and a lead having at least two separated portions with a passive component coupled across the two portions.
Abstract:
A magnetic field sensor includes a lead frame having a plurality of leads, at least two of which have a connection portion and a die attach portion. A semiconductor die is attached to the die attach portion of the at least two leads. The sensor further includes at least one wire bond coupled between the die and a first surface of the lead frame. The die is attached to a second, opposing surface of the lead frame in a lead on chip configuration. In some embodiments, at least one passive component is attached to the die attach portion of at least two leads.
Abstract:
A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead. Also described is a coil secured to the non-conductive mold material and a lead having at least two separated portions with a passive component coupled across the two portions.
Abstract:
A magnetic field sensor includes a lead frame having a plurality of leads, at least two of which have a connection portion and a die attach portion. A semiconductor die is attached to the die attach portion of the at least two leads and a separately formed ferromagnetic element, such as a magnet, is disposed adjacent to the lead frame.
Abstract:
Methods and apparatus for detecting a magnetic field include a semiconductor substrate, a coil configured to provide a changing magnetic field in response to a changing current in the coil; and a magnetic field sensing element supported by the substrate. The coil receives the changing current and, in response, generates a changing magnetic field. The magnetic field sensing element detects the presence of a magnetic target by detecting changes to the magnetic field caused by the target and comparing them to an expected value.
Abstract:
In one aspect, a magnetic field sensor is configured to detect a ferromagnetic object. The magnetic field sensor includes a magnet that includes two North regions and two South regions configured to generate opposing directions of magnetization to form a magnetic flux. The magnetic field sensor also includes a magnetic field sensing element configured to generate an is output signal responsive to changes in the magnetic flux caused by movement of the ferromagnetic object.