摘要:
A mirrored storage system for applications is provided, which enables and supports the variation and dynamic adaptation of the Recovery Point Objectives (RPO) based on policies. Furthermore, methods are provided for running such a mirrored storage system. Said mirrored storage system comprises a first storage system and at least one further storage system, wherein said first and said further storage system are connected via at least one mirror link. An application accesses said mirrored storage system via a network. Therewith, the data to be stored as response to a write command of said application can be mirrored according to a configurable time-varying RPO requirement of the application transmitting the corresponding write command.
摘要:
A method, system and computer program product for reducing the collective power consumption of a plurality of storage devices including a plurality of associated storage volumes is provided. The storage volumes are grouped by a last access time according to a plurality of ranks. The plurality of ranks corresponds to a level of power consumption based on device activity. A volume of the plurality of storage volumes is moved between the plurality of ranks according to an access pattern of the volume.
摘要:
A method to access a data in a RAID array comprising a plurality of data storage media, wherein information is written to said plurality of data storage media using a RAID configuration, wherein the method receives from a requester a command comprising a data access priority indicator. If a RAID rebuild is in progress, the method determines if the data access priority indicator is set. If the data access priority indicator is set, the method executes a command selected from the group consisting of writing information to the target logical block array range, and returning to the requestor information read from the target logical block array range.
摘要:
A method is disclosed to store and retrieve information using holographic data storage media. The method provides original data, generates a first image of that original data, and encodes that first image in a holographic data storage medium at a first storage location. The method then generates a second image of the original data, where the second image differs from the first image, and encodes the second image in a holographic data storage medium at a second storage location, where the second storage location differs from the first storage location.
摘要:
A method is disclosed to determine an optimal power level to encode information holographically. The method sets (N) evaluation power levels, displays an evaluation image on a spatial light modulator. For each value of (i), the method energizes a light source using the (i)th power level, generates the (i)th reference beam, generates the (i)th carrier beam, forms the (i)th data beam comprising the evaluation image, forms the (i)th hologram using the (i)th reference beam and the (i)th data beam, and encodes the (i)th hologram in a holographic data storage medium, where (i) is greater than or equal to 1 and less than or equal to (N).
摘要:
Holographic recording drives encode data for recording into a holographic medium. The steps comprise run length limited encoding three bytes of data into 5×5 matrix information, the data subject to a 4-byte error correction code; and providing the 5×5 matrix information to a spatial light modulator (SLM), as a portion of a two-dimensional pixel matrix of the spatial light modulator, for recording into a holographic image on the holographic medium.
摘要:
A holographic storage drive and control of a holographic storage system are configured to write at least a group of holograms in a predetermined pattern in the holographic storage medium, and to write a directory hologram which relates to the holograms of the group to form an anchor location of the predetermined pattern. Further, a directory comprising the directory hologram stored in a memory, and the control is configured to initiate a read operation of at least one hologram of a group with an access for the directory hologram of the group at the anchor location; to read the accessed hologram, employing a matched filter to cross-correlate the read accessed hologram with an ideal version of the directory hologram derived from the directory stored in the memory; and to determine whether the read accessed hologram is the directory hologram of the group.
摘要:
Provided are techniques for storing data. An Input/Output (I/O) command is received, wherein the I/O command includes a unique identifier that is associated with one region of a multi-format data store. The unique identifier is used to select an I/O channel from among multiple I/O channels, wherein each I/O channel is associated with a data format and with a region of the multi-format data store. The I/O command is forwarded to the selected I/O channel to access the region.
摘要:
A method to provide data storage services using one or more holographic data storage media disposed in a holographic data storage system operated by a data storage services provider, wherein the holographic data storage system comprises a light source, a spatial light modulator, and a plurality of holographic data storage media, wherein the method receives information provided by the data storage services customer, allocates a first holographic data storage medium for exclusive storage of information provided by the data storage services customer, defines an outer storage portion of the first allocated holographic data storage medium, and stores the information as one or more holograms encoded in the outer storage portion of the first holographic data storage medium.
摘要:
A method writes at least a group of holograms in a predetermined pattern in the holographic storage medium, and writes a directory hologram which relates to the holograms of the group to form an anchor location of the predetermined pattern. Further, a directory comprising the directory hologram is stored in a memory, and a read operation of at least one hologram of a group is initiated with an access for the directory hologram of the group at the anchor location; reading the accessed hologram, employing a matched filter to cross-correlate the read accessed hologram with an ideal version of the directory hologram derived from the directory stored in the memory; and determining whether the read accessed hologram is the directory hologram of the group.