Abstract:
According to the teachings presented herein, a wireless communication apparatus compensates for timing misalignment in its received signal processing. In at least one embodiment, the apparatus estimates a set of path delays for a received signal and sets processing delays on the estimated path delays. The apparatus jointly hypothesizes combinations of fractional timing offsets for two or more paths, and computes a decision metric for each joint hypothesis that indicates the accuracy of the joint hypothesis. As non-limiting examples, the decision metric may be a signal quality metric, or a distance metric (such as between a measured net channel response and an effective net channel response reconstructed as a function of the combination of fractional timing offsets included in the joint hypothesis). The apparatus evaluates the decision metrics to identify a best estimate of timing misalignment, and correspondingly compensates coherent processing of the received signal.
Abstract:
Methods and apparatus for use in a multiple-input multiple-output (MIMO) system transmitting a plurality of data substreams to a receiver employing ordered successive interference cancellation detection according to a predetermined sequence for decoding the data substreams. A quality of service (QoS) requirement is determined for each of two or more application-specific data streams, and the application-specific data streams are assigned to the data substreams according to the determined QoS requirements and the predetermined sequence, so that application-specific data streams having more stringent QoS requirements are decoded earlier than application-specific data streams having less stringent QoS requirements. In some embodiments, the determined QoS requirements comprise maximum delay requirements, and application-specific data streams requiring shorter maximum delays are assigned to earlier-decoded data substreams than application-specific data streams having less stringent maximum delay requirements. In other embodiments, the determined QoS requirements comprise an application-specific robustness.
Abstract:
Channel estimation and/or equalization processing is performed in a wireless receiver in two stages. The first stage involves pre-filtering in the frequency domain to compact a grid-based representation of the net channel. The second stage involves implementing reduced-complexity time domain channel estimation and/or equalization. According to one embodiment, a received signal transmitted over a net channel is processed by pre-filtering the received signal in the frequency domain. The frequency domain pre-filtering compacts an N-tap effective grid-based representation of the net channel into a K-tap compacted grid-based representation of the net channel where K
Abstract:
A method for use in receiving a spread-spectrum signal includes receiving an input signal. The input signal includes a first plurality of multipath components. The method also includes despreading the first plurality of multipath components. The step of despreading includes computing a plurality of corresponding delays. The method also includes computing a plurality of combining weights based, at least in part, on interference correlation between at least two of the first plurality of multipath components, selecting, according to at least one criterion, a subset of the plurality of combining weights, and despreading and combining a second plurality of multipath components using at least one quantity related to the selected plurality of combining weights and a plurality of delays and multipath components corresponding to the plurality of selected combining weights. This Abstract is provided to comply with rules requiring an Abstract that allows a searcher or other reader to quickly ascertain subject matter of the technical disclosure. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
Multipath components of a signal transmitted through a time-varying digital radio channel are received with individual delays (τ) within a range (τ1 . . . τM) of possible delay values. The individual delays are estimated and a delay profile (g(τi)) calculated repetitively. The method comprises searching repetitively for new multipath components in a search window constituting a subset of the possible delays, and positioning the search window based on a previous delay profile (g(τi)). For each of a number of search window positions (k) a sum of power is determined for the multipath components located in the search window with that position, and the position of the search window is selected based on the determined sums of power. In this way the multipath detection is less influenced by the noise floor, and it is also effective for channels having a wide delay spread and/or significantly time-varying delay profiles.
Abstract:
A received OFDM signal is processed to determine a plurality of reference delays, which may include the path delays of a multipath channel. The effective channel estimates corresponding to each reference delay are determined, as is the covariance of the ISI and noise components observed at each delay. Combining weights resulting in maximum post-combining SINR are determined for all subcarriers. A corresponding plurality of FFTs is applied to the incoming sample stream, one at each of the reference delays. The individual subcarriers from each FFT output are then combined using the combining weights. This produces a single FFT output with suppressed ISI, which is used in further processing.
Abstract:
A computationally-simplified approach to expected symbol value determination is based on classifying soft bit information corresponding to symbols in a received communication signal as being reliable or unreliable, and computing expected symbol values for the symbols based on the classified soft bit information. Classification can be carried out by “quantizing” the soft bit information to coarsely indicate whether individual symbol bits are known with high or low probability. Using quantized soft bit information greatly simplifies expected symbol value calculation, yet the calculated values still reflect a scaling corresponding to the underlying reliability of the soft bit information. Where the expected symbol values are computed for interfering symbols in a composite signal that also includes desired signals, preserving the underlying reliability knowledge in this manner effectively scales the amount interference cancellation applied to the composite signal in dependence on the reliability to which the interfering signal values are known.
Abstract:
The teachings presented herein provide methods and apparatus for use in a multiple-input multiple-output (MIMO) system transmitting a plurality of data substreams to a receiver employing ordered successive interference cancellation detection according to a predetermined sequence for decoding the data substreams. In an exemplary method, a quality of service (QoS) requirement is determined for each of two or more application-specific data streams, and the application-specific data streams are assigned to the data substreams according to the determined QoS requirements and the predetermined sequence, so that application-specific data streams having more stringent QoS requirements are decoded earlier than application-specific data streams having less stringent QoS requirements. In some embodiments, the determined QoS requirements comprise maximum delay requirements, and application-specific data streams requiring shorter maximum delays are assigned to earlier-decoded data substreams than application-specific data streams having less stringent maximum delay requirements. In other embodiments, the determined QoS requirements comprise an application-specific robustness, wherein application-specific data streams corresponding to less robust applications are assigned to earlier-decoded data substreams than application-specific data streams corresponding to more robust applications.
Abstract:
The impairment processor described herein uses a look-up table operation to reduce the computational complexity associated with determining an impairment correlation between first and second sample streams for an interference rejection receiver. One exemplary impairment processor iteratively computes multiple partial impairment correlations based on values selected from look-up table(s), and combines the partial impairment correlations to obtain a final impairment correlation between the first and second sample streams. During each iteration, the impairment processor computes a pair of delay offsets corresponding to the respective processing and path delays of the first and second sample streams, computes an index value as a function of a difference between the pair of delay offsets, selects a pre-computed value from the look-up table based on the index value, determines a pulse correlation estimate based on the selected pre-computed value, and determines the partial impairment correlation for that iteration based on the pulse correlation estimate.
Abstract:
An instantaneous power density profile (PDP) is generated by dynamically switching between signals from two or more antennae, each for a variable number of signal samples. A variable number NC of samples are correlated with a known chip code, the correlations phase-coherently accumulated, and a number NNC of such coherent accumulations is accumulated non-coherently for each of a plurality of delay values. The parameters considered in determining the dynamic switching pattern may include values of NC and NNC, how often and at which point in the PDP generation process to switch between antennae, and other factors, such as the velocity of a transmitter. The coherent accumulations from each antenna may be weighted in response to the signal quality of the respective antenna, and the weighted coherent accumulations accumulated non-coherently.
Abstract translation:通过在两个或更多个天线的信号之间动态切换产生瞬时功率密度分布(PDP),每个天线的每一个用于可变数量的信号样本。 样本的可变数N C C与已知芯片码相关,相干累加的相关性和这种相干累积的数量N N N N非相干地累积 对于多个延迟值中的每一个。 在确定动态切换模式时考虑的参数可以包括N N C和N N NC的值,PDP生成过程中在天线和 其他因素,如发射机的速度。 来自每个天线的相干累加可以响应于相应天线的信号质量而加权,并且加权相干累加非相干地累积。