Abstract:
Scalable color balancing techniques for processing images to be presented on displays are described. One technique includes receiving ambient light color information from an ambient light sensor and input image data to be presented via a display coincident with receiving the ambient light color information. The display may have a first white point at a time prior to receiving the input image data. The technique may include determining a second white point for the display based on the input image data and the ambient light color information. The first and second white points may differ from each other. The technique may also include generating one or more chromatic adaptation transforms (CATs) based on the white points. Output image data may be generated based on applying the one or more CATs to the input image data. The output image data may be presented via the display. Other embodiments are described.
Abstract:
A display may store extended display identification data for communicating the capabilities of the display to a source device such as a graphics processing unit. The extended display identification data may include a red primary color value, a green primary color value, and a blue primary color value. The primary color values in the extended display identification data may be determined during manufacturing. For example, a light sensor may measure the native primary colors of the display, and calibration computing equipment may determine if the native primary colors of the display are within a target color gamut. If the native primary colors of the display are outside of the target color gamut by an amount larger than a threshold, the primary color values in the extended display identification data may be adjusted to account for the color variation.
Abstract:
An optical test equipment/method for display testing that features parallel testing/sensing configuration that covers spectrum and colorimetric quantities with spatial resolution is disclosed. In one embodiment, a spectra-camera, which is a hybrid system consisting of both a single-point spectrometer and an imaging colorimeter, can be configured for concurrent display artifact and parametric testing. An aperture mirror with a hole in the middle splits an image of a test display into two parts. One part of the image passes through the hole and is directed to the spectrometer for display parametric testing. The rest of the image is reflected off the aperture mirror for concurrent display artifact testing with the colorimeter. In another embodiment, a beam splitter can be used instead of an aperture mirror. In yet another embodiment, the single-point high accuracy spectrometer can be used to calibrate the low accuracy imaging colorimeter.
Abstract:
A method is provided for calibrating a display having color channels. Each color channel is capable of adjusting settings for pixel values at gray level entries. The method includes selecting a gray level entry for calibration. The method also includes providing a target white point in chromaticity coordinates (x, y) and a target brightness at the selected gray level entry to the display. The method further includes adjusting the setting for the pixel values for the color channels at the selected gray level entry such that the display achieves the target white point and the target brightness at an adjusted pixel value.
Abstract:
An electronic device may include a display and display control circuitry. The display may be calibrated to compensate for changes in display temperature. Display calibration information may be obtained during manufacturing and may be stored in the electronic device. The display calibration information may include color-specific adjustment factors configured to adjust display colors and reduce temperature-related color shifts. During operation of the display, the display control circuitry may receive input pixel values for a display pixel. The display control circuitry may also receive display temperature information from a temperature sensor in the electronic device. The display control circuitry may determine adjustment factors based on a color associated with the input pixel values and the display temperature information. The display control circuitry may apply the adjustment factors to the input pixel values to obtain adapted pixel values. The adapted pixel values may be provided to the display pixel.
Abstract:
An electronic device may include a display having an array of display pixels. Storage and processing circuitry may generate display data for the display in an RGB input color space. The display may display the display data in an RGBW output color space. Display control circuitry may use sets of predetermined conversion factors to convert display data from the RGB input color space to the RGBW output color space without requiring conversion to a device-independent color space. Each set of predetermined conversion factors may be associated with a color in a set of predetermined colors. Using the sets of predetermined conversion factors, the display control circuitry may convert RGB values in the input color space to RGBW values in the output color space. The display control circuitry may supply data signals corresponding to the display data in the RGBW output color space to the array of display pixels.
Abstract:
Methods and apparatuses to varying the apparent brightness of a display are described. The change in apparent brightness is accompanied by unchanged in relative contrast, rendering a display with higher or lower brightness while maintaining contrast fidelity. In exemplary embodiments, the signals for the middle tone levels are adjusted to increase or decrease the brightness intensity, while keeping constant the gamma correction. This maintains the relative contrast of images while rendering them at a different brightness. Implementations of the present process include an adjusted gamma correction lookup table, incorporated in the video card to modify the video signal before reaching the display. The present invention can be used for matching the brightness of two or more displays or to provide compensation for variations in display characteristics to ensure consistency in display brightness within a data processing model.
Abstract:
A method is provided for calibrating a display having color channels. Each color channel is capable of adjusting settings for pixel values at gray level entries. The method includes selecting a gray level entry for calibration. The method also includes providing a target white point in chromaticity coordinates (x, y) and a target brightness at the selected gray level entry to the display. The method further includes adjusting the setting for the pixel values for the color channels at the selected gray level entry such that the display achieves the target white point and the target brightness at an adjusted pixel value.
Abstract:
An electronic device may include a display and display control circuitry. The display may be calibrated to compensate for changes in display temperature. Display calibration information may be obtained during manufacturing and may be stored in the electronic device. The display calibration information may include color-specific adjustment factors configured to adjust display colors and reduce temperature-related color shifts. During operation of the display, the display control circuitry may receive input pixel values for a display pixel. The display control circuitry may also receive display temperature information from a temperature sensor in the electronic device. The display control circuitry may determine adjustment factors based on a color associated with the input pixel values and the display temperature information. The display control circuitry may apply the adjustment factors to the input pixel values to obtain adapted pixel values. The adapted pixel values may be provided to the display pixel.
Abstract:
An electronic device may include a display and display control circuitry. The display may be calibrated to compensate for changes in display temperature. Display calibration information may be obtained during manufacturing and may be stored in the electronic device. The display calibration information may include adjustment factors configured to adjust incoming pixel values to reduce temperature-related color shifts. During operation of the electronic device, display control circuitry may determine the temperature at different locations on the display. The display control circuitry may determine the temperature at a given display pixel using the temperatures at the different locations on the display. The display control circuitry may determine adjustment values based on the temperature at the display pixel. The display control circuitry may apply the adjustment values to incoming pixel values to obtain adapted pixel values, which may in turn be provided to the display pixel.