Abstract:
A temperature control apparatus is disclosed. An integrated circuit (IC) includes a plurality of temperature sensors, a first thermal control loop, and a second thermal control loop. The first thermal control loop is configured to control temperature of the IC by reducing a frequency of a clock signal provided to the IC in response to a temperature at one of the plurality of temperature sensors reaching a first temperature threshold. The second thermal control loop is configured to control temperature of the IC by dithering the clock signal provided to the IC in response to a temperature at one of the plurality of temperature sensors reaching a second temperature threshold that is greater than the first temperature threshold.
Abstract:
In one embodiment, a system includes power management control that controls a duty cycle of a processor to manage power. The duty cycle may be the amount of time that the processor is powered on as a percentage of the total time. By frequently powering up and powering down the processor during a period of time, the power consumption of the processor may be controlled while providing the perception that the processor is continuously available. For example, the processor may be a graphics processing unit (GPU), and the period of time over which the duty cycle is managed may be a frame to be displayed on the display screen viewed by a user of the system.
Abstract:
In an embodiment, a system includes a plurality of functional circuits, a power supply circuit, and a power management circuit. The power supply circuit may generate a shared power signal coupled to each of the functional circuits, and to generate a plurality of adjustable power signals. One adjustable power signal may be coupled to a particular functional circuit of the functional circuits. The power management circuit may a request to the power supply circuit to change a voltage level of the one particular adjustable power signal from a first voltage to a second voltage. The particular functional circuit may couple a respective power node for a sub-circuit of the particular functional circuit to either of the shared power signal or the particular adjustable power signal. The particular functional circuit may also be configured to maintain an operational voltage level on the power node.
Abstract:
In an embodiment, a system includes a plurality of functional circuits, a power supply circuit, and a power management circuit. The power supply circuit may generate a shared power signal coupled to each of the functional circuits, and to generate a plurality of adjustable power signals. One adjustable power signal may be coupled to a particular functional circuit of the functional circuits. The power management circuit may a request to the power supply circuit to change a voltage level of the one particular adjustable power signal from a first voltage to a second voltage. The particular functional circuit may couple a respective power node for a sub-circuit of the particular functional circuit to either of the shared power signal or the particular adjustable power signal. The particular functional circuit may also be configured to maintain an operational voltage level on the power node.
Abstract:
The subject matter of the disclosure relates to low temperature power throttling at a mobile device to reduce the likelihood of an unexpected power down event in cold weather environments. A mobile device employing a power management solution may be configured to determine that a monitored temperature at the mobile device (at the battery of the mobile device) is below a first threshold level, and whether a hardware component (such as a camera) is active or inactive. Then, based on these determinations, the mobile device can select a throttle setting from a first set of throttle settings when the hardware component is active, and a second set of throttle settings when the hardware component is inactive. Subsequently the mobile device can throttle power consumption for one or more components of the mobile device according to the selected throttle setting.
Abstract:
A linked multiple independent control system can include two or more independent controllers configured to cooperatively control operating points of a system. In one particular embodiment, the linked multiple independent control system can control operating temperatures of a computing device. In one embodiment, the independent controllers can operate in parallel to develop control effort signals that are used by the computing device to affect operating parameters of one or more components included in the computing device. In another embodiment, independent controllers can have independent temperature thresholds that can affect control effort signals only from the related controller.
Abstract:
Embodiments of a method that allow the adjustment of performance settings of a computing system are disclosed. One or more functional units may include multiple monitor circuits, each of which may be configured to monitor a given operational parameter of a corresponding functional unit. Upon detection of an event related to a monitored operational parameter, a monitor circuit may generate an interrupt. In response to the interrupt a processor may adjust one or more performance settings of the computing system.
Abstract:
Various techniques for temperature management during inductive energy transfer are disclosed. A transmitter device and/or a receiver device can be turned off during energy transfer based on the temperature of the transmitter device and/or of the receiver device.
Abstract:
The invention provides a technique for targeted scaling of the voltage and/or frequency of a processor included in a computing device. One embodiment involves scaling the voltage/frequency of the processor based on the number of frames per second being input to a frame buffer in order to reduce or eliminate choppiness in animations shown on a display of the computing device. Another embodiment of the invention involves scaling the voltage/frequency of the processor based on a utilization rate of the GPU in order to reduce or eliminate any bottleneck caused by slow issuance of instructions from the CPU to the GPU. Yet another embodiment of the invention involves scaling the voltage/frequency of the CPU based on specific types of instructions being executed by the CPU. Further embodiments include scaling the voltage and/or frequency of a CPU when the CPU executes workloads that have characteristics of traditional desktop/laptop computer applications.
Abstract:
Methods and apparatuses to automatically adjust a thermal requirement of a data processing system are described. One or more conditions associated with a data processing system are detected. A temperature requirement for the data processing system is determined based on the one or more conditions. The performance of the data processing system may be throttled to maintain a temperature of the data processing system below the temperature requirement. Detecting the one or more conditions associated with the data processing system may include determining a location of the data processing system based on a measured motion, a state of a peripheral device, a position of one portion of the data processing system (e.g., a lid) relative another portion of the data processing system (e.g., a bottom portion), a type of application operating on the data processing system, or any combination thereof.