摘要:
A remote control system for electronic device and remote control method thereof, the remote control system comprises a controlled apparatus and a remote controller. The controlled apparatus comprises a processing control system (121) and an instruction execution unit (125) in which at least a video capturing device (122,126) connected to the controlled apparatus is also included. At least a characteristic composition is included on the remote controller, at least a video capturing device (122,126) is used for collecting the characteristic composition on the remote controller the processing control system (121) is used for processing the collected characteristic composition images, parsing into the respective instructions, and giving the instruction execution unit (125) the instructions to execute.
摘要:
Described is a technology in which point cloud surface reconstruction is performed via parallel processing on a graphics processing unit, achieving real-time reconstruction rates. An octree is built for a given set of oriented points, with each node containing a set of points enclosed by the node. The data structure is built on the GPU, in parallel, using level-order traversals to process nodes at a same tree level. The surface is reconstructed based on data configured and located via the traversals. To produce the surface, an implicit function over the volume spanned by the octree nodes is computed using the GPU, e.g., based on a Poisson surface reconstruction method. A sparse linear system is built and a multi-grid solver is employed to solve the system. An adaptive marching cubes procedure is performed on the GPU to extract an isosurface of the implicit function as a triangular mesh.
摘要:
Described is a technology for constructing kd-trees on GPUs, in a manner that is sufficiently fast to achieve real-time performance by exploiting GPU-based parallelism during the kd-tree construction. Tree nodes are built in breadth-first search order, e.g., to use a thread for each node at each level. For large nodes at upper tree levels, computations are parallelized over geometric primitives (instead of nodes). To this end, large nodes are split into child nodes by cutting off empty space based until an empty space ratio is achieved, and thereafter performing spatial splitting. Small nodes are split based on split candidate costs, e.g., computed by a surface area heuristic or a voxel volume heuristic (VVH).
摘要:
An approach to enrich skeleton-driven animations with physically-based secondary deformation in real time is described. To achieve this goal, the technique described employs a surface-based deformable model that can interactively emulate the dynamics of both low- and high-frequency volumetric effects. Given a surface mesh and a few sample sequences of its physical behavior, a set of motion parameters of the material are learned during an off-line preprocessing step. The deformable model is then applicable to any given skeleton-driven animation of the surface mesh. Additionally, the described dynamic skinning technique can be entirely implemented on GPUs and executed with great efficiency. Thus, with minimal changes to the conventional graphics pipeline, the technique can drastically enhance the visual experience of skeleton-driven animations by adding secondary deformation in real time.
摘要:
This disclosure describes a joint-aware deformation framework that supports the direct manipulation of an arbitrary mix of rigid and deformable components. The deformation framework may include at least a joint-analysis and a joint-aware deformation enabling a more realistic deformation of a joint-aware model.
摘要:
A real-time algorithm for rendering an inhomogeneous scattering medium such as fog is described. An input media animation is represented as a sequence of density fields, each of which is decomposed into a weighted sum of a set of radial basis functions (RBFs) such as Gaussians. The algorithm computes airlight and surface reflectance of the inhomogeneous scattering medium. Several approximations are taken which lead to analytical solutions of quantities such as an optical depth integrations and single scattering integrations, and a reduced number of integrations that need to be calculated. The resultant algorithm is able to render inhomogeneous media including their shadowing and scattering effects in real time. The algorithm may be adopted for a variety of light sources including point lights and environmental lights.
摘要:
Techniques are described for rendering a volume of scattering media, in particular by computing radiances of points or voxels in the scattering media. A set of sample points in the scattering media are found. Radiances of the sample points are computed. Radiance gradients of the sample points are computed from the radiances. The radiances and gradients are used to interpolate radiances throughout the scattering media. The set of sample points may be computed in an iterative dynamic manner in order to concentrate samples near features (e.g., shadow edges) of the scattering media.
摘要:
Described is a technology by which a user interacts with a surface representative of a point cloud data to correct for imperfect scan data. The surface is reconstructed based on the interaction. Real time viewing of the image is facilitated by parallel surface reconstruction. For example, the user may draw strokes to reduce topological ambiguities in poorly-sampled areas. An algorithm automatically adds new oriented sample points to the original point cloud based on the user interaction. Then a new isosurface is generated for the augmented point cloud. The user also may specify the geometry of missing areas of the surface. The user copies a set of points from another point cloud, and places the points around the target area. A new isosurface is then generated.
摘要:
Described is a technology in which point cloud surface reconstruction is performed via parallel processing on a graphics processing unit, achieving real-time reconstruction rates. An octree is built for a given set of oriented points, with each node containing a set of points enclosed by the node. The data structure is built on the GPU, in parallel, using level-order traversals to process nodes at a same tree level. The surface is reconstructed based on data configured and located via the traversals. To produce the surface, an implicit function over the volume spanned by the octree nodes is computed using the GPU, e.g., based on a Poisson surface reconstruction method. A sparse linear system is built and a multi-grid solver is employed to solve the system. An adaptive marching cubes procedure is performed on the GPU to extract an isosurface of the implicit function as a triangular mesh
摘要:
Described is a technology for constructing kd-trees on GPUs, in a manner that is sufficiently fast to achieve real-time performance by exploiting GPU-bsaed parallelism during the kd-tree construction. Tree nodes are built in breadth-first search order, e.g., to use a thread for each node at each level. For large nodes at upper tree levels, computations are parallelized over geometric primitives (instead of nodes). To this end, large nodes are split into child nodes by cutting off empty space based until an empty space ratio is achieved, and thereafter performing spatial splitting. Small nodes are split based on split candidate costs, e.g., computed by a surface area heuristic or a voxel volume heuristic (VVH).