Abstract:
A display panel, a method for driving the display panel, and a display device are provided. The display panel includes a display region and a peripheral region surrounding the display region. Multiple gate lines each extending in a first direction and multiple data lines each extending in a second direction are arranged at the display region. A multiplexer is arranged at the peripheral region pointed by the second direction. The multiplexer is used to, under the control of gate line ON signals from a gate line switching control line, input gate line signals from a source driver unit to corresponding gate lines in a time-division manner, and under the control of data line ON signals from corresponding data line switching control lines, input data signals from the source driver unit to corresponding data lines in a time-division manner.
Abstract:
The present disclosure provides a hat and a hat brim length adjusting method, which can solve the problem that the hat brim length of the existing sunscreen hats cannot be adjusted in real time. The present hat comprises a hat body and a hat brim which is retractable in length; the hat further comprises a power supply, an adjustment unit and a detection unit; wherein the detection unit is used for detecting relations between a position of the sun and a position of a wearer's face in real time; and the adjustment unit is used for adjusting a length of the hat brim according to the detection result. The hat brim length of the present hat is adjustable, so that the hat not only can block the sun for the wearer but also can provide a good sight angle for the wearer.
Abstract:
The present disclosure provides a display device and a method for controlling a grating. The display device includes at least a pixel array and a grating. The pixel array comprises a plurality of columns of pixels. Each pixel includes at least one sub-pixel. Upper edges of odd-numbered columns of sub-pixels are aligned and upper edges of even-numbered columns of sub-pixels are aligned, and each of the odd-numbered columns of sub-pixels and each of the even-numbered columns of sub-pixels are staggered longitudinally. The grating comprises a liquid crystal layer and a first substrate. The electrodes of the first substrate are arranged to correspond to a region where a portion of the odd-numbered columns of, or the even-numbered columns of, sub-pixels of the pixel array is located. A corresponding region of the grating is turned on or turned off so as to form a light shielding region and a light transmitting region.
Abstract:
Disclosed are a method and a device for discriminating a boundary of image, and a display panel, for effectively discriminating whether an image has a boundary and in which direction the boundary is. The method for discriminating the boundary of image comprises: receiving an image information to be discriminated to form a matrix of grayscale parameter values, and dividing, with a grayscale parameter value corresponding to a sub-image unit to be processed as a center, the matrix of grayscale parameter values into a n×n matrix and a (n+2)×(n+2) matrix (S101); determining respectively in the n×n matrix and the (n+2)×(n+2) matrix: a minimum gradient and a minimum standard deviation in a row direction, in a column direction, in a first diagonal direction, and in a second diagonal direction, dispersion with respect to the minimum standard deviation and dispersion with respect to the minimum gradient (S102; S103); outputting a first code value when the determined dispersion is greater than N multiples of a minimum corresponding thereto, outputting a second code value when the determined dispersion is smaller than the N multiples of the minimum corresponding thereto (S104); determining, based on an outputted code value, whether the image to be discriminated has a boundary and in which direction the boundary is (S105).
Abstract:
The present invention provides a display panel, a display method thereof and a display device. The display panel comprises multiple pixel units arranged in a matrix, three sub-pixels having different colors in each pixel unit form a first pixel, four sub-pixels in the middle of any two adjacent pixel units in the same row comprise three sub-pixels having different colors that form a second pixel, four sub-pixels in the middle of any two adjacent pixel units in the same column comprise three sub-pixels having different colors that form a third pixel, and four sub-pixels in the middle of any four pixel units in adjacent two rows and adjacent two columns comprise three sub-pixels having different colors that form a fourth pixel, wherein within display time of one frame of image, the first pixel, second pixel, third pixel and fourth pixel are displayed in a time-sharing manner.
Abstract:
A display panel, a display module and a display device, and relates to the field of display technology and includes: a first base substrate and a second base substrate arranged oppositely; a liquid crystal layer and a plurality of conductive layers, wherein the liquid crystal layer and the plurality of conductive layers are located between the first base substrate and the second base substrate; and a plurality of heating elements, wherein the plurality of heating elements are distributed in at least one of the conductive layers.
Abstract:
A pixel driving circuit includes a driving sub-circuit, a signal writing sub-circuit, a compensation sub-circuit, a light-emitting control sub-circuit and an initialization sub-circuit. The signal writing sub-circuit is configured to write a voltage of a data signal terminal into the driving sub-circuit as a data voltage. The light-emitting control sub-circuit is configured to, in conjunction with the driving sub-circuit, drive a light-emitting device to emit light. The initialization sub-circuit is configured to transmit the voltage from the data signal terminal to the compensation sub-circuit as a reset voltage. The compensation sub-circuit is configured to transmit the reset voltage from the initialization sub-circuit to the driving sub-circuit to reset the driving sub-circuit.
Abstract:
A display substrate and a manufacturing method therefor, and a display device. The display substrate comprises: a substrate, the substrate comprising a blind hole area; a buffer layer covering one side of the substrate; an organic film layer provided on the surface of the buffer layer away from the substrate and having a first opening in the blind hole area; a passivation layer provided on the side of the organic film layer away from the substrate and having a second opening in the blind hole area; and a transparent electrode layer covering the passivation layer and the buffer layer in the second opening.
Abstract:
Provided is a digital exposure control method, including: performing exposure of different types of functional areas of a substrate to be exposed through one or a plurality of full-page scans, wherein scan speeds for different types of functional areas of the substrate to be exposed are different.
Abstract:
A transfer printing method and a transfer printing apparatus. The transfer method includes: transferring a plurality of devices formed on an original substrate to a transfer substrate obtaining first position information of positions of the plurality of devices on the transfer substrate; obtaining second position information of corresponding positions, on a target substrate, of devices to be transferred; comparing the first position information with the second position information to obtain first target position information recording a first transfer position; and aligning the transfer substrate with the target substrate and performing a site-designated laser irradiation on at least part of devices on the transfer substrate corresponding to the first transfer position, simultaneously, according to the first target position information, so as to transfer the at least part of the devices from the transfer substrate to the target substrate.