Abstract:
A shift register, a gate driving circuit and a display panel. The shift register includes an input circuit, an output circuit, a storage circuit, an output pull-down circuit, a pull-up circuit of a pull-down node, a pull-down circuit of the pull-down node, and a first pull-down circuit of a pull-up node. The first pull-down circuit of the pull-up node includes a resistor, and the resistor is configured to prevent a short circuit between a first power supply end and a second power supply end.
Abstract:
The present disclosure provides a display panel and a display device including the display panel, the display panel including a first substrate and a second substrate disposed opposite to each other, wherein at least one restriction region is formed in a peripheral area of the first substrate by a wiring pattern, and one or more spacers are provided on the second substrate corresponding to the restriction region, and the spacers form restriction with the wiring pattern in at least one direction parallel to the substrates.
Abstract:
The disclosure provides a pixel circuit including a reset module, a data write module, a storage module, a compensation and hold module, a drive module, and a light emitting device. The reset module is connected to the storage module and the light emitting device. The data write module is connected to the drive module. The compensation and hold module is connected to the drive module and the storage module. The storage module is connected to the drive module. The drive module is connected to the light emitting device.
Abstract:
The present invention discloses an array substrate and a display panel. The array substrate comprises a plurality of data lines and a plurality of gate lines which are provided to intersect each other. The data lines are provided in parallel and the gate lines are provided in parallel, and the data lines and the gate lines vertically intersect to divide the array substrate into a plurality of pixel units each having a pixel electrode provided therein. The pixel electrode comprises a sub-pixel electrode comprising a root portion and a branch portion group connected to the root portion, the branch portion group consisting of a plurality of branch portions, adjacent ones of which are separated by slits. The branch portion group partially overlaps the data lines and/or the gate lines.
Abstract:
The present invention provides an outer frame and a display device. The outer frame is configured to package an edge of a liquid crystal module and includes at least one sub frame, the sub frame comprises a side plate, a first packaging plate, a second packaging plate and a supporting plate, the side plate, the first packaging plate, the second packaging plate and the supporting plate are formed integrally, a first accommodation groove for accommodating an edge of the liquid crystal module is formed by the side plate, the first packaging plate and the supporting plate, and a second accommodation groove for accommodating an edge of the back cover plate configured to cover the back surface of the liquid crystal module is formed by the side plate, the supporting plate and the second packaging plate.
Abstract:
A display housing and a display device are disclosed. The display housing includes a front frame and a rear cover. A first hook and a first slot are disposed on the front frame, and a second slot and a second hook are disposed on the rear cover. The front frame and the rear cover are configured to be fixedly connected by snapping the first hook into the second slot and snapping the first slot into the second hook. The display housing may resolve the problem of assembling efficiency being low due to threaded connection.
Abstract:
An organic light emitting diode (OLED) display device and a preparation method thereof, and a display apparatus are disclosed. The OLED display device includes: a thin layer transistor (22), a first electrode (23′), a second electrode (26′) and an organic functional layer (25) located between the first electrode (23′) and the second electrode (26′). The thin film transistor (22) comprises a gate electrode (221), a source electrode (222) and a drain electrode (223); and the first electrode (23′) is electrically connected with the drain electrode (223). The display device further comprises a first auxiliary electrode (27) formed from a topological insulator. The first auxiliary electrode (27) is electrically connected with the second electrode (26′) to provide electrical signals for the second electrode (26′). The OLED display avoids the problems of high IR drop and non-uniform lightness caused by the large transmission resistance of the cathodes.
Abstract:
A display device and an array substrate are disclosed. The display device includes a display panel and signal boards which supply signals to the display panel. At least a pair of signal boards that are connected with each other is electrically connected using a plug-in connection mode. A first plug-in structure is provided on a first signal board of each pair of signal boards connected in the plug-in connection mode, and a second plug-in structure corresponding to the first plug-in structure is provided on a second signal board of the pair of signal boards connected in the plug-in connection mode. Because at least a pair of signal boards that are connected with each other is electrically connected using a plug-in connection mode, a quantity of signal lines arranged between signal boards is reduced, which enables assembly and disassembly be more convenient.
Abstract:
The disclosure provides a display panel and a display device. The display panel includes: a base substrate, a transistor array layer, a pixel defining layer, touch electrodes. The area of opening region of first color sub-pixel is smaller than that of opening region of third color sub-pixel, the area of opening region of second color sub-pixel is smaller than that of opening region of third color sub-pixel. An orthogonal projection of second capacitor in first color sub-pixel and an orthogonal projection of touch electrodes have a first auxiliary overlap area, an orthogonal projection of second capacitor in second color sub-pixel and orthogonal projection of the touch electrodes have a second auxiliary overlap area, an orthogonal projection of second capacitor in third color sub-pixel and orthogonal projection of touch electrodes have a third auxiliary overlap area. The first and/or second auxiliary overlap area is larger than the third auxiliary overlap area.
Abstract:
A liquid crystal display panel includes an array substrate and an opposite substrate that are disposed opposite to each other; the liquid crystal display panel has a display region and at least one non-display region disposed beside the display region. The array substrate is of a multi-layer structure and includes a pixel electrode layer and a plurality of protrusions disposed in the at least one non-display region, and the opposite substrate includes a common electrode layer. A protrusion has a structure including at least one film, and a film of the at least one film is located in a layer included in the array substrate.