摘要:
The present invention provides a system and method for detecting and repairing defects in semiconductor devices. According to the invention, defects are located using a scanning probe microscope, such as an atomic force microscope or a scanning tunneling microscope, and repaired at locations determined by the scanning probe microscope. The microscope itself, and in particular the detection tip, may be employed to remove the defects. For example, the tip may be used to machine away the defect, to apply an electric field to oxidize the defect, and/or to heat the defect causing it to burn or vaporize. By combining precise defect location capabilities of a scanning probe microscope with defect removal, the invention permits very precise correction of defects such as excess material and foreign particles on semiconductor substrates.
摘要:
A system for analyzing a film and detecting a defect associated therewith includes a scanning probe microscope having a nanotube tip with a material associated therewith which exhibits a characteristic that varies with respect to a film composition at a location corresponding to the nanotube tip. The system also includes a detection system for detecting the material characteristic and a controller operatively coupled to the detection system and the scanning probe microscope. The controller configured to receive information associated with the detected characteristic and use the information to determine whether the film contains a defect at the location corresponding to the nanotube tip. The invention also includes a method of detecting a film composition at a particular location of a film or substrate. The method includes associating a material exhibiting a characteristic which varies with respect to a film composition with a nanotube tip of a scanning probe microscope and detecting the characteristic. The method then includes the step of determining a composition of a portion of the film using the detected characteristic.
摘要:
The present invention comprises a system for deconvolving tip effects associated with scanning tips in scanning probe microscopes and other scanning systems. The system comprises a scanning system operable to scan a feature or artifact with multiple, different type scanning tips and generate scan data associated therewith and a processor operably coupled to the scanning system. The processor is adapted to determine characteristics associated with the multiple, different type scanning tips using the scan data associated therewith. The present invention also comprises a method of determining scanning probe microscope tip effects. The method comprises the steps of scanning a feature or artifact with a plurality of different type scanning tips, resulting in a plurality of scan data sets associated with the different type scanning tips. The tip effects associated with the different type scanning tips are then deconvolved using the plurality of scan data sets.
摘要:
A method of reworking a photoresist used to pattern a semiconductor structure is provided. A dielectric layer is formed over an anti-reflective coating, the anti-reflective coating covering a first underlayer, the first underlayer covering a second underlayer. A first photoresist layer is formed and patterened over the dielectric layer to yield a desired photoresist pattern. An undesired feature in the patterned first photoresist layer is determined. The patterned first photoresist layer is removed. A second photoresist layer is formed and patterned over the dielectric layer. Exposed portions of the dielectric layer, the anti-reflective coating and the first underlayer are etched. A thin photoresist layer is formed over exposed portions of the second underlayer. A CMP process is performed to remove the dielectric layer. The thin photoresist layer is stripped.