Optical fiber coating die with reduced wetted length

    公开(公告)号:US10882782B2

    公开(公告)日:2021-01-05

    申请号:US15868029

    申请日:2018-01-11

    Abstract: An optical fiber coating apparatus that provides increased gyre stability and reduced gyre strength, thereby providing a more reliable coating application process during fiber drawing includes a cone-only coating die having a conical entrance portion with a tapered wall angled at a half angle α, wherein 2°≤α≤25°, and a cone height L1 less than 2.2 mm, and a cylindrical portion having an inner diameter of d2, wherein 0.1 mm≤d2≤0.5 mm and a cylindrical height of L2, wherein 0.05 mm≤L2≤1.25 mm; a guide die having an optical fiber exit, the guide die disposed adjacent the cone-only coating die such that a wetted length (L5) between the optical fiber exit of the guide die and the entrance of the cone-only coating die is from 1 mm to 5 mm; and a holder for holding the cone-only coating die and the guide die in a fixed relationship defining a coating chamber between the guide die and the cone-only coating die, the coating chamber having an inner radius L6 from the optical fiber axis to an inner wall of the holder that is from 3 mm to 10 mm.

    FLUID BEARINGS HAVING A FIBER SUPPORT CHANNEL FOR SUPPORTING AN OPTICAL FIBER DURING AN OPTICAL FIBER DRAW PROCESS

    公开(公告)号:US20190055153A1

    公开(公告)日:2019-02-21

    申请号:US16059168

    申请日:2018-08-09

    Abstract: A fluid bearing for directing optical fibers during manufacturing is presented. The fluid bearing provides a flow of fluid to levitate and direct an optical fiber along a process pathway. The optical fiber is situated in a fiber slot and subjected to an upward force from fluid flowing from an inner radial position of the fiber slot past the optical fiber to an outer radial position of the fiber slot. The levitating force of fluid acting on the optical fiber is described by a convex force curve, according to which the upward levitating force on the optical fiber increases as the optical fiber moves deeper in the slot. Better stability in the positioning of the optical fiber in the fiber slot is achieved and contact of the optical fiber with solid surfaces of the fluid bearing is avoided. Various fluid bearing structures for achieving a convex force curve are described.

    METHODS OF MAKING OPTICAL FIBER WITH REDUCED HYDROGEN SENSITIVITY
    38.
    发明申请
    METHODS OF MAKING OPTICAL FIBER WITH REDUCED HYDROGEN SENSITIVITY 有权
    制造具有降低氢敏感度的光纤的方法

    公开(公告)号:US20150315062A1

    公开(公告)日:2015-11-05

    申请号:US14337364

    申请日:2014-07-22

    Abstract: A method of making optical fibers that includes controlled cooling to produce fibers having a low concentration of non-bridging oxygen defects and low sensitivity to hydrogen. The method may include heating a fiber preform above its softening point, drawing a fiber from the heated preform and passing the fiber through two treatment stages. The fiber may enter the first treatment stage at a temperature between 1500° C. and 1700° C., may exit the first treatment stage at a temperature between 1200° C. and 1400° C., and may experience a cooling rate less than 5000° C./s in the first treatment stage. The fiber may enter the second treatment stage downstream from the first treatment stage at a temperature between 1200° C. and 1400° C., may exit the second treatment stage at a temperature between 1000° C. and 1150° C., and may experience a cooling rate between 5000° C./s and 12,000° C./s in the second treatment stage. The method may also include redirecting the fiber with a fluid bearing device or an air-turn device.

    Abstract translation: 制造光纤的方法包括控制冷却以产生具有低浓度的非桥接氧缺陷和对氢的低敏感性的纤维。 该方法可以包括在其软化点之上加热纤维预制件,从加热的预成型件拉伸纤维并使纤维通过两个处理阶段。 纤维可以在1500℃和1700℃之间的温度下进入第一处理阶段,可以在1200℃和1400℃之间的温度下离开第一处理阶段,并且可能经历的冷却速率小于 在第一处理阶段为5000℃/秒。 纤维可以在1200℃和1400℃之间的温度下进入第一处理阶段下游的第二处理阶段,可以在1000℃和1150℃之间的温度下退出第二处理阶段,并且可以 在第二处理阶段经历5000°C /秒和12,000°C / s之间的冷却速度。 该方法还可以包括用流体轴承装置或空气转动装置重新定向纤维。

Patent Agency Ranking