Abstract:
A detachable transparent plate for a scan head assembly in a document scanning system that allows an operator to detach the transparent plate from the scan head assembly located above a media feed path to clean a top face of the transparent plate and easily reattach it to the scan head assembly. The scan head assembly has an optical system and a sealing member detachably mounted to a bottom end of the optical system. The transparent plate is received and supported by the sealing member and defines a portion of a bottom surface of the sealing member. The sealing member is detachable from the bottom end of the optical system to allow an operator access to the top face of the transparent plate of the sealing member for cleaning the top face of the transparent plate.
Abstract:
The present application is directed to embodiments for moving a media sheet within a scanning device. The methods include moving the media sheet through a separation mechanism that prevents multiple media sheets from being moved simultaneously along the media path. Further, a buckle is formed in the sheet at a point upstream from a scanner. The buckle acts as a buffer to absorb any load release that could occur as the media sheet exits the separation mechanism. The load release could cause a change in the velocity of the media sheet as it moves across the scanner.
Abstract:
A tubular structure with an opening defined thereon and having an inner surface and an outer surface. The tubular structure being substantially circular in shape and is made of a highly thermal conductive material. A plurality of light sources mounted on the inner surface of the tubular structure. The inner surface is coated with a diffused white coating. Light emitted from the plurality of light sources is reflected from the inner surface before exiting the tubular structure from the opening. This structure ensures emitting a uniform diffused light and prevents non-uniform illumination when disposed in an imaging forming device.
Abstract:
Method and image scanning apparatus comprising an image capture unit having an illumination assembly for generating input light; a printed circuit board mounted to the image capture unit, a cooling unit generating an airflow which cools the illumination assembly of the image capture unit as well as the critical components mounted on the printed circuit board and the optical components of the image capture unit; and an adjustable baffle member moveably mounted to the frame of the image scanning apparatus for controlling the path of the airflow relative to the lamp. The cooling unit comprises at least one fan with the fan generating airflow for cooling the lamp of image capture unit. The baffle member is adjustable to control the airflow generated by the fan such that the airflow generated by the fan is redirected downward and passes the airflow under the image capture unit, thereby effectively and evenly cooling the lamp and redirecting contaminants to the end of the image scanning apparatus enclosure opposite the image capture unit.
Abstract:
An apparatus and methods of use for adjusting a sliding guide rod for an imaging device of a flatbed scanner to improve scanner skew misalignment comprising an attachment member movably mounting the sliding guide rod at one end thereof to one side of the flatbed scanner so as to allow skew-adjusting movement of the sliding guide rod at an opposite end thereof relative to the flatbed scanner and a skew adjustment assembly attached to an opposite side of the flatbed scanner and movably coupling and supporting the opposite end of the sliding guide rod to the opposite side of the flatbed scanner and being actuatable to cause the sliding guide rod to undergo skew adjustment relative to the flatbed scanner to correct scanner skew misalignment of the imaging device. The skew adjustment assembly includes a skew adjustment bracket mounted to the opposite side of the flatbed scanner and movably coupled to and supporting the opposite end of the sliding guide rod to the opposite side of the flatbed scanner and a tension spring and a plurality of bracket locking fasteners coacting with the skew adjustment bracket and movably actuatable relative thereto to move the sliding guide rod to undergo the skew adjustment relative to the flatbed scanner.
Abstract:
Methods and devices for converting printed media into audio data. In one embodiment, a device includes a scanning platform for supporting the document to be scanned, a scanning mechanism for converting images on the document into image data, and a processor configured to convert the scanned image data into audio data. The device may further include printer components configured to create a hardcopy of the image data, an audio device such as a speaker, and an interface for outputting the image data or audio data.
Abstract:
The present application is directed to embodiments for moving a media sheet within a scanning device. The methods include moving the media sheet through a separation mechanism that prevents multiple media sheets from being moved simultaneously along the media path. Further, a buckle is formed in the sheet at a point upstream from a scanner. The buckle acts as a buffer to absorb any load release that could occur as the media sheet exits the separation mechanism. The load release could cause a change in the velocity of the media sheet as it moves across the scanner.
Abstract:
A scanning or copying system can include imaging elements and one or more system processors that are programmed or adapted to perform image processing methods and algorithms on image data, and in some instances, to enhance the image. Image data is acquired using imaging elements. Some imaging elements may have overlapping or rotated fields of view or employ differing resolutions. For each imaging element, its output is recombined together with the output of one or more other imaging elements. To perform the recombination, the system can extract features in an overlapping region and match these features in multiple images. In some instances, the features matched can be edges. Alternatively, the recombination can be performed by positioning each subimage with respect to a larger image through image matching and location techniques. Parameters from the recombined image can be extracted and these parameters can be used to correct for geometrical and spatial distortions and thereby enhance the image.
Abstract:
An improved shingle mask is provided for use on ink jet printers which use multi-pass printing (shingling) to form bitmap images. The shingle mask is derived from a shingle mask density distribution which exhibits a substantially trapezoidal shape; the shingle mask density distribution is derived from an accumulated shingle mask distribution (also referred to as a “banding profile”) having an overall shape of a plateau portion and a substantially smooth decreasing portion, which reduces the number of drops to be printed along the outermost edges of the mask on each swath. This shape reduces banding effects by effectively increasing a number of printed-density bands which are decreased in size, while at the same time not increasing the number of printhead passes over a given area on the print media (which otherwise would negatively impact printed throughput).
Abstract:
An illumination assembly for a scanner according to one example embodiment includes a scan head frame. A thermally conductive heat sink component has an elongated base portion that is mounted along a longitudinal edge of the scan head frame and a protruding portion having a generally L-shaped structure that includes a first portion extending from the base portion and a second portion extending from and generally orthogonal to the first portion. A light source is coupled to the second portion of the protruding portion of the heat sink component. A first reflector is removably coupled to the first portion of the protruding portion of the heat sink component and is positioned directly in the optical path of the light source.