Abstract:
A transmission includes an accumulator to hold one of more shift elements in an engaged state while an engine is off. The transmission also includes a hydraulic park system that disengages park in response to engagement of two shift elements. In some circumstance, draining the accumulator in an uncontrolled manner in the presence of a failed valve may lead to unintentionally disengaging park. To avoid this, the accumulator is discharged in a controlled manner. Fluid is first transferred from the accumulator to a shift element apply chamber. Then, the fluid is vented from the shift element apply chamber.
Abstract:
A transmission includes an accumulator to hold one of more shift elements in an engaged state while an engine is off. The transmission also includes a hydraulic park system that disengages park in response to engagement of two shift elements. In some circumstance, draining the accumulator in an uncontrolled manner in the presence of a failed valve may lead to unintentionally disengaging park. To avoid this, the accumulator is discharged in a controlled manner. Fluid is first transferred from the accumulator to a shift element apply chamber. Then, the fluid is vented from the shift element apply chamber.
Abstract:
A vehicle includes a transmission having a torque converter, an oncoming clutch, and a controller. The controller is programmed to, in response to a torque of the oncoming clutch exceeding an estimated average by a threshold during an engagement, increase the torque of the oncoming clutch via a feedforward command and adjust the torque of the oncoming clutch via a feedback command to compensate for deviations in the torque generated by the feedforward command during the engagement.
Abstract:
A vehicle includes a transmission having a first neutral with a first combination of engaged clutches and a second neutral with a second combination of engaged clutches. The second neutral has more engaged clutches than the first neutral. A vehicle controller is programmed to, in response to a request to shift from the first to the second neutral and a failed-on clutch being detected, inhibit the shift to remain in the first neutral.
Abstract:
A transmission and control method are disclosed which ensure proper stroke pressure and minimize torque transients during a shift event. The transmission includes a clutch having a torque capacity based on a fluid pressure, a torque sensor adapted to measure a torque value that varies in relationship to the torque capacity, and a controller. The method includes varying the fluid pressure around a predetermined value, measuring a resulting torque difference with the torque sensor, and adjusting a clutch control parameter if the resulting torque difference is less than a threshold value.