Abstract:
A dynamic model is stored in memory that defines torque transmitted by a lockup clutch in a torque converter as a function of a plurality of torque converter operating parameters. A lockup clutch command to control engagement the lockup clutch is asserted, and thereafter a number of the plurality of torque converter operating parameters are monitored. The model is continually solved using the monitored operating parameters to determine torque transmitted by the lockup clutch over time, and a lockup clutch on-coming capacity signal is produced if the torque transmitted by the lockup clutch exceeds a torque threshold.
Abstract:
A dynamic model is stored in memory that defines torque transmitted by a lockup clutch in a torque converter as a function of a plurality of torque converter operating parameters. A lockup clutch command to control engagement the lockup clutch is asserted, and thereafter a number of the plurality of torque converter operating parameters are monitored. The model is continually solved using the monitored operating parameters to determine torque transmitted by the lockup clutch over time, and a lockup clutch on-coming capacity signal is produced if the torque transmitted by the lockup clutch exceeds a torque threshold.
Abstract:
A control system and method for controlling a multiple gear ratio automatic transmission in a powertrain for an automatic transmission having pressure activated friction torque elements to effect gear ratio upshifts. The friction torque elements are synchronously engaged and released during a torque phase of an upshift event as torque from a powertrain source is increased while allowing the off-going friction elements to slip, followed by an inertia phase during which torque from a powertrain source is modulated. A perceptible transmission output torque reduction during an upshift is avoided.
Abstract:
A method for controlling a power-off downshift in a powershift transmission includes disengaging the current gear, synchronizing engine speed and a speed of the target gear layshaft by increasing a torque capacity of the target gear clutch, disengaging the clutch, engaging the target gear, and reengaging the clutch.
Abstract:
A control apparatus of an automatic transmission has an engagement part, a power-ON/OFF state judgment section and a control section controlling a capacity of the engagement part. The control section compares an actual input revolution speed difference absolute value of an absolute value of a difference between an input revolution speed when engaged and an actual input revolution speed with a target input revolution speed difference absolute value of an absolute value of a difference between the input revolution speed when engaged and a target input revolution speed, then a deviation is determined by subtracting the target input revolution speed difference absolute value from the actual input revolution speed difference absolute value. When the deviation is positive, the capacity is increased. When the deviation is negative, the capacity is reduced. When the deviation is zero, a previous capacity that is set before the comparison of the both absolute values is maintained.
Abstract:
A dual clutch automated manual transmission includes a first clutch and a second clutch, and a clutch torque capacity command value for a plurality of clutch actuators arranged to drive the first clutch and second clutch based on operation of a by-wire type of clutch lever, wherein the clutch torque capacity of the plurality of clutches is controlled. An operator can adjust a driving force by manually operating the clutch in the transmission in which a clutch operation is controlled automatically, such as an automatic transmission system, automated manual transmission system, or dual clutch automated manual transmission system, thereby improving drivability.
Abstract:
A controller, control method, and control system for a motor vehicle gear-type transmission enable a friction transmission unit to be controlled to an optimum position according to a particular motor vehicle state or the like. A transmission control unit changes, via at least one parameter that indicates a state of the gear-type transmission or of the vehicle, a position or pressure load at which the pressure member is caused to stand by while the driving shaft of the vehicle is in a stopped state or during changeover of the mesh unit that connects to one of the gear pairs.
Abstract:
A method of controlling a torque-transmitting mechanism in a multi-speed transmission includes providing structure forming a pressurizable reaction chamber at a reaction surface of an apply piston opposing an apply surface of the piston. The reaction chamber is pressurized to a first pressure during engagement of the torque-transmitting mechanism to establish a first speed ratio and a first torque capacity. The reaction chamber is pressurized to a second pressure level during engagement of the torque-transmitting mechanism to establish a second speed ratio and a second torque capacity. Thus, because pressure in the reaction chamber may be controllably varied, a greater reaction pressure is established during the second speed ratio, allowing a greater apply pressure level to be used to establish the second torque capacity. A clutch capacity control system is also provided that allows better control of torque-transmitting mechanisms engagable in different speed ratios to establish different torque capacities.
Abstract:
A method for diagnosing contact pressure security in a continuously variable transmission having conical disk pairs and a contacting endless belt. Contact pressure forces between the disks and the belt are modified at a given transmission ratio, at a defined input and/or output torque, and at a contact pressure having a defined zeta ratio value between the contact pressure force on the input disk set and on the output disk set. The input and/or output torque is held constant. The resulting change of transmission ratio is determined, and based upon the transmission ratio change the contact pressure security is assessed based upon the deviation between the existing pressure security and an optimum pressure security.
Abstract:
A gear change control system of a belt-type continuously variable transmission includes: a movable pulley piston chamber for causing a thrust force to a movable pulley varying a groove width of primary pulley and secondary pulley. The movable pulley piston chamber has double-piston constitution including: a primary clamp chamber and a secondary clamp chamber, for causing a clamp force of clamping the belt, and a cylinder chamber including a primary pulley cylinder chamber and a secondary pulley cylinder chamber, for causing a differential thrust force at a gear change. A clamp chamber oil pressure setting section sets up a clamp chamber oil pressure by the following calculation: dividing the one of the primary thrust force and the secondary thrust force by addition of: applied pressure area of one of the primary clamp chamber and the secondary clamp chamber, and applied pressure area of the cylinder chamber on a selected side.