Abstract:
An image processing device includes a transfer function input unit to which each of transfer functions of a plurality of imaging-systems is input, a calculation unit that calculates a target resolution value which is a target value of recovery processing that recovers a plurality of captured images to be output from each of the plurality of the imaging-systems based on each of the input transfer functions and a predetermined criterion, a recovery filter generation unit that generates a recovery filter used for the recovery processing with respect to each of the plurality of imaging-systems based on each of the transfer functions of the plurality of imaging-systems and a target resolution value, and a recovered image generation unit that performs the recovery processing with respect to the captured images acquired from the plurality of imaging-systems by using the recovery filter generated for each of the plurality of imaging-systems to generate recovered images.
Abstract:
A restoration filter generation device which generates a restoration filter for performing a restoration process on luminance system image data, the restoration process being based on a point-image distribution in an optical system, the luminance system image data being image data relevant to luminance and being generated based on image data for each color of multiple colors, the restoration filter generation device including an MTF acquisition device which acquires a modulation transfer function MTF for the optical system; and a restoration filter generation device which generates the restoration filter based on the modulation transfer function MTF, the restoration filter suppressing an MTF value of image data for each color of the multiple colors to 1.0 or less at least in a region of a particular spatial frequency or less, the image data for each color of the multiple colors corresponding to the luminance system image data after the restoration process.
Abstract:
A restoration filter generation device which generates a restoration filter for performing a restoration process on luminance system image data, the restoration process being based on a point-image distribution in an optical system, the luminance system image data being image data relevant to luminance and being generated based on image data for each color of multiple colors, the restoration filter generation device including an MTF acquisition device which acquires a modulation transfer function MTF for the optical system; and a restoration filter generation device which generates the restoration filter based on the modulation transfer function MTF, the restoration filter suppressing an MTF value of image data for each color of the multiple colors to 1.0 or less at least in a region of a particular spatial frequency or less, the image data for each color of the multiple colors corresponding to the luminance system image data after the restoration process.
Abstract:
There are provided an image processing apparatus, an image processing method, and a program capable of realizing a desired image filtering process specified based on an optical characteristic of an individual optical system with high accuracy using a simple computation process. Further, there are provided a filter acquisition apparatus, a filter acquisition method, program, and a recording medium capable of acquiring a filter which is suitably usable in an image filtering process. A filtering process unit 41 (image processing apparatus 35) applies a filter to processing target data to acquire filter application process data, applies a gain to the filter application process data to acquire gain application process data, in each filtering process. In each filtering process, the gain applied to the filter application process data is acquired based on a target frequency characteristic of the image filtering process.
Abstract:
Disclosed are an image processing device, an imaging device, an image processing method, and an image processing program capable of, when recovering a deteriorated image due to a point spread function of an optical system, effectively performing phase recovery and suppressing the occurrence of artifact due to frequency recovery processing. The image processing device includes a phase recovery processing unit which subjects image data acquired from an imaging element by capturing an object image using an optical system to phase recovery processing using a phase recovery filter based on a point spread function of the optical system, a gradation correction processing unit which subjects image data subjected to the phase recovery processing to nonlinear gradation correction, and a frequency recovery processing unit which subjects image data subjected to the gradation correction to frequency recovery processing using a frequency recovery filter based on the point spread function of the optical system.
Abstract:
A restoration filter generation device according to one embodiment of the present invention includes: an information acquisition unit that acquires information showing a difference that depends on a color of an optical transfer function of an optical system; and a restoration filter generation unit that generates a restoration filter, which weakens restoration strength according to the difference that depends on the color of the optical transfer function on the basis of the information acquired by the information acquisition unit, and makes the restoration strength of the restoration filter weaker than the restoration strength of an ideal filter decided assuming that the difference that depends on the color of the optical transfer function does not exist. As a result, the overcorrection is reduced.
Abstract:
An image processing device according to an embodiment of the present invention obtains recovery image data by performing restoration processing using a restoration filter based on a point spread function of an optical system, on original image data obtained from an imaging element by imaging using the optical system. The restoration filter used in this restoration processing (a combination filter and realization filter Fr) is generated by combining multiple base filters Fb. Base filter Fb may be arbitrarily selected from filters that are confirmed beforehand to be effective to prevent image quality degradation.
Abstract:
According to the present invention, since a color image for a moving image including that for live view display includes image data on pixel lines including first and second phase difference pixels, phase difference AF can be accurately performed during the moving image taking. A color image for the moving image includes not only the image data on the pixel lines including the first and second phase difference pixels, but also image data on pixel lines that do not include the first and second phase difference pixels and only include normal pixels. Accordingly, the image quality of the color image for the moving image is improved, an image interpolation process can be accurately performed, and reduction in image quality of a taken image (still image and moving image) through the phase difference pixels can be prevented or alleviated.
Abstract:
In the color imaging element, a basic array pattern is repeatedly placed in a first direction and in a second direction, the basic array pattern includes two sets of patterns each including a first pattern corresponding to 2×2 pixels composed of first filters, a second pattern corresponding to 1×2 pixels composed of the first filters, third patterns each corresponding to 2×2 pixels each composed of second filters, and fourth patterns each corresponding to 1×2 pixels each composed of the second filters, in a color filter array, first patterns and the third patterns are alternately disposed in the first direction, and the first patterns and the fourth patterns are alternately disposed in the second direction.
Abstract:
In the present invention, effective thinned reading is performed when using an imaging device provided with a color filter other than a Bayer array. This imaging device (10) is provided with: an imaging element (14) containing a plurality of photoelectric conversion elements arrayed in a first and second direction; a color filter, wherein a basic array pattern resulting from a first and second filter being disposed in a predetermined pattern of N×M pixels and the first and second filter being disposed in a first and second direction is disposed repeatedly, and the first filter is disposed in a first-third direction in the color filter; a line image data generation means that, from the imaging element (14), reads the pixel signals of a plurality of pixels at a set cycle, and from the read pixel signals, generates line image data comprising pixel signals of pixels arrayed along the second direction and arrayed in an (N+k) line cycle in the first direction among the plurality of pixels; and an image data generation means that generates image data on the basis of the line image data.