Abstract:
A converter comprises an input stage coupled to a power source, wherein the input stage comprises a plurality of power switches, a first resonant tank coupled to the input stage, wherein the first resonant tank is of a first Q value, a second resonant tank coupled to the input stage, wherein the second resonant tank is of a second Q value, a transformer coupled to the input stage through the first resonant tank and the second resonant tank and an output stage coupled to the transformer.
Abstract:
An apparatus comprises an isolated power converter coupled to an input dc power source, wherein the isolated power converter comprises a primary switching network operating at a fixed switching frequency, a secondary resonant tank including a dc blocking capacitor and a rectifier having two input terminals coupled to the secondary resonant tank, an output capacitor coupled between a first output terminal of the rectifier and a load and a dc/dc converter coupled between a second output terminal of the rectifier and the load.
Abstract:
A method comprises providing a resonant converter comprising a switching network comprising a plurality of switches, a resonant tank coupled between the switching network and a transformer, wherein the resonant tank comprises a series resonant inductor coupled to a switching network and the transformer and a series resonant capacitor coupled to the switching network and the transformer and a driver having an adjustable bias voltage and in response to a startup process of the resonant converter, configuring the switching network to operate a switching frequency higher than a resonant frequency of the resonant tank.
Abstract:
An apparatus comprises a first series resonant inductor coupled to a switching network and a transformer, a first series resonant capacitor coupled to the switching network and the transformer, a first parallel inductor coupled to the switching network through the first series resonant inductor and the first series resonant capacitor, a resonant frequency adjusting device coupled to the switching network and the transformer and a switch connected in series with the resonant frequency adjusting device.
Abstract:
A converter comprises an input stage coupled to a power source, wherein the input stage comprises a plurality of power switches, a first resonant tank coupled to the input stage, wherein the first resonant tank is of a first Q value, a second resonant tank coupled to the input stage, wherein the second resonant tank is of a second Q value, a transformer coupled to the input stage through the first resonant tank and the second resonant tank and an output stage coupled to the transformer.
Abstract:
An apparatus comprises an isolated power converter coupled to an input dc power source, wherein the isolated power converter comprises a first switch network coupled to a first transformer winding and a second switch network coupled to a second transformer winding and a non-isolated power converter coupled to the second switch network of the isolated power converter, wherein a current flowing through the non-isolated power converter is a fraction of a current flowing through the isolated power converter.
Abstract:
A method includes generating a first ramp signal for controlling a first portion of a converter, generating a second ramp signal for controlling a second portion of the converter, controlling a state of a first switch of the first portion through comparing the first ramp signal to a control signal and a state of a first switch of the second portion through comparing the second ramp signal to the control signal and determining a switching cycle of the converter through comparing a current flowing through an inductor of the converter to a threshold.
Abstract:
A device comprises a gate drive bridge coupled between a bias voltage of a power converter and ground and a transformer connected to the gate drive bridge, wherein the transformer comprises a primary winding connected to two legs of the gate drive bridge respectively and a plurality of secondary windings configured to generate gate drive signals for low side switches, high side switches and secondary switches of the power converter.
Abstract:
A method comprises providing a resonant converter comprising a switching network comprising a first high-side switch, a second high-side switch, a first low-side switch and a second low-side switch, a resonant tank coupled between the switching network and a transformer and a rectifier coupled to a secondary side of the transformer, coupling a driver to the switching network and the rectifier, wherein the driver includes a first winding coupled to the rectifier, a second winding coupled to the first high-side switch and a third winding coupled to the second high-side switch, detecting a signal indicating a soft switching process of the driver and adjusting a resonant frequency of the driver until the resonant frequency of the driver approximately matches a switch frequency of the resonant converter.
Abstract:
An apparatus comprises a first series resonant inductor coupled to a switching network and a transformer, a first series resonant capacitor coupled to the switching network and the transformer, a first parallel inductor coupled to the switching network through the first series resonant inductor and the first series resonant capacitor, a resonant frequency adjusting device coupled to the switching network and the transformer and a switch connected in series with the resonant frequency adjusting device.