Abstract:
System and method embodiments are provided for non-cellular wireless access. In an embodiment, a method for non-cell grid based radio access in a radio access network includes determining, by a controller, a group of transmit points (TPs) to assign to a logical entity; assigning, by the controller, a logical entity identifier (ID) to the logical entity, wherein the logical entity ID identifies the logical entity through which a user equipment (UE) communicates with the radio access network; and causing, by the controller, at least one of the TPs in the logical entity to send signals to the UE.
Abstract:
User equipment (UE) cooperation can be improved by relaying partial soft information to target UEs. More specifically, a cooperating UE may relay a subset of log-likelihood ratios (LLRs) to the target UE. The subset of LLRs may correspond to fewer than all resource blocks of the original transmission. This may allow UE cooperation to be effective when the cooperating UE was only able to decode a portion of the original transmission. This may also allow fewer network resources (e.g., bandwidth, etc.) to be used when the target UE does not need all of the soft information to decode the original transmission. Multiple cooperating UEs can provide different subsets of LLRs, and the subsets may or may not overlap with one another.
Abstract:
Virtualized group-wise communications between a wireless network and a plurality of user equipments (UEs) are supported using UE cooperation. UE cooperation includes receiving, at a cooperating UE (CUE), downlink information from the wireless network destined for a target UE (TUE) and associated with a group identifier (ID). The group ID indicates a virtual multi-point (ViMP) node that includes the TUE and the CUE. The UE cooperation also includes sending the downlink information to the TUE. The UE or UE component can have a processor configured to forward between the wireless network and a TUE at least some information that is associated with a group ID indicating a ViMP node that groups the TUE and the UE.
Abstract:
Embodiments are provided for a compress and forward relaying scheme in joint multi-cell processing. A plurality of base stations receive similar combinations of user signals from a plurality of users, compress the signals using quantization, and relay the signals over respective backhaul links to a processor in the network for decoding the signal. The processor determines suitable quantization noise levels for the backhaul links according to a weighted sum-rate maximization function for optimizing the quantization noise levels, subject to a backhaul sum capacity constraint on the backhaul links. The determined quantization noise levels are sent to the base stations, which then quantize the received combinations of user signals according to the quantization noise levels and relay the quantized signals to the processor. The quantization is according to a Wyner-Ziv coding or a single user compression algorithm that excludes statistical correlations between the user signals at the base stations.
Abstract:
A grant-free transmission mode may be used to communicate small traffic transmissions to reduce overhead and latency. The grant-free transmission mode may be used in downlink and uplink data channels of a wireless network. In the downlink channel, a base station transmits packets to a group of UEs in a search space without communicating any transmission code assignments to the UEs. The UEs receive the downlink packets using blind detection. In the uplink channel, UEs transmit packets in an access space using assigned access codes which are either independently derived by the UEs or otherwise communicated by the base station using a slow-signaling channel. Hence, the grant-free transmission mode allows mobile devices to make small traffic transmissions without waiting for uplink grant requests.
Abstract:
System and method embodiments are provided for enabling flexible and reliable UE-to-UE based relay. The embodiments include using fountain codes for combining signals at a suitable network layer higher than a media access control (MAC) sub-layer and using a MAC sub-layer hybrid automatic repeat request (HARQ) transmission scheme. When a relay UE in a UE group for joint reception receives, from a network access point, a data packet intended for a destination UE in the UE group and including fountain code at the higher network layer, the relay UE sends the data packet to the destination UE and returns a HARQ ACK message at the MAC sub-layer to the access point. The destination UE then receives and decodes the data packet. Subsequently, upon receiving the entire data, the destination UE sends an ACK message at the higher network layer to the access point.
Abstract:
A method of transmitting includes categorizing a transmission between the first device and a second device as one of a plurality of transmission types, and selecting an air interface from a plurality of air interface candidates in accordance with the transmission as categorized. The method also includes sending the transmission to the second device using the selected air interface.
Abstract:
Embodiments are provided for a compress and forward relaying scheme in joint multi-cell processing. A plurality of base stations receive similar combinations of user signals from a plurality of users, compress the signals using quantization, and relay the signals over respective backhaul links to a processor in the network for decoding the signal. The processor determines suitable quantization noise levels for the backhaul links according to a weighted sum-rate maximization function for optimizing the quantization noise levels, subject to a backhaul sum capacity constraint on the backhaul links. The determined quantization noise levels are sent to the base stations, which then quantize the received combinations of user signals according to the quantization noise levels and relay the quantized signals to the processor. The quantization is according to a Wyner-Ziv coding or a single user compression algorithm that excludes statistical correlations between the user signals at the base stations.
Abstract:
A method for performing orthogonal frequency division multiplexing (OFDM)-offset quantization amplitude modulation (OQAM) includes obtaining a data burst. The method includes performing weighted circularly convolved filtering modulation on the data burst to produce an output signal. The method further includes a first wireless device transmitting the output signal to a second wireless device. The second wireless device receives an input signal from the first wireless device, and the second wireless devices performs weighted circularly convolved demodulation filtering on the input signal to produce the data burst.
Abstract:
A method embodiment includes compiling, by a network device, a cooperation candidate set (CCS) and determining a cooperation active set (CAS). The CCS includes a plurality of potential cooperating user equipment (CUEs) for selection to the CAS, and the plurality of potential CUEs is selected from a plurality of user equipment (UEs) in the network. The CAS is a set of CUEs selected from the CCS. A target user equipment (TUE) and the set of CUEs form a virtual multipoint transceiver.