Abstract:
A method for generating a code, a method for encoding and decoding data, and an encoder and a decoder performing the encoding and decoding are disclosed. In an embodiment, a method for lifting a child code from a base code for encoding and decoding data includes determining a single combination of a circulant size, a lifting function, and a labelled base matrix PCM according to an information length and a code rate using data stored in a lifting table. The lifting table was defined at a code generation stage. The method also includes calculating a plurality of shifts for the child code. Each shift is calculated by applying the lifting function to the labelled base matrix PCM with a defined index using the circulant size and using the derived child PCM to encode or decode data.
Abstract:
System and method embodiments are provided to improve offloading traffic from mobile operators networks via a WiFi network. The embodiments also include schemes to offload traffic between WiFi networks. The embodiments include a network component comprising a WiFi management entity (WiME) configured to serve as an anchor point for a user device at a WiFi network and communicate with a management entity at a wireless network using OpenFlow protocol to handle a plurality of control and mobility functionalities for traffic in the WiFi network, wherein the control and mobility functionalities include offloading traffic for the user device from the wireless network to the WiFi network.
Abstract:
System and method embodiments are provided for transmission and reception scheduling for wireless devices in a multi-user full duplex transmission environment. The embodiments enable interference avoidance between neighboring wireless devices. The system and method also enable channel sounding. In an embodiment, a method for scheduling transmissions in a multi-user wireless system includes determining, by a transmission point, neighboring wireless devices for each of a plurality of wireless devices located within a coverage area of the transmission point and determining, by the transmission point, a transmission schedules for respective ones of the plurality of wireless devices according to the neighboring information of the devices such that each respective wireless device is scheduled to transmit data over different time-frequency resources than those in which neighboring wireless devices of the respective wireless device are scheduled to receive data.
Abstract:
A method for generating a code, a method for encoding and decoding data, and an encoder and a decoder performing the encoding and decoding are disclosed. In an embodiment, a method for lifting a child code from a base code for encoding and decoding data includes determining a single combination of a circulant size, a lifting function, and a labelled base matrix PCM according to an information length and a code rate using data stored in a lifting table. The lifting table was defined at a code generation stage. The method also includes calculating a plurality of shifts for the child code. Each shift is calculated by applying the lifting function to the labelled base matrix PCM with a defined index using the circulant size and using the derived child PCM to encode or decode data.
Abstract:
A method for generating a code, a method for encoding and decoding data, and an encoder and a decoder performing the encoding and decoding are disclosed. In an embodiment, a method for lifting a child code from a base code for encoding and decoding data includes determining a single combination of a circulant size, a lifting function, and a labelled base matrix PCM according to an information length and a code rate using data stored in a lifting table. The lifting table was defined at a code generation stage. The method also includes calculating a plurality of shifts for the child code. Each shift is calculated by applying the lifting function to the labelled base matrix PCM with a defined index using the circulant size and using the derived child PCM to encode or decode data
Abstract:
System and method embodiments are provided for non-cellular wireless access. In an embodiment, a method for non-cell grid based radio access in a radio access network includes determining, by a controller, a group of transmit points (TPs) to assign to a logical entity; assigning, by the controller, a logical entity identifier (ID) to the logical entity, wherein the logical entity ID identifies the logical entity through which a user equipment (UE) communicates with the radio access network; and causing, by the controller, at least one of the TPs in the logical entity to send signals to the UE.
Abstract:
An asynchronous processing system comprising an asynchronous scalar processor and an asynchronous vector processor coupled to the scalar processor. The asynchronous scalar processor is configured to perform processing functions on input data and to output instructions. The asynchronous vector processor is configured to perform processing functions in response to a very long instruction word (VLIW) received from the scalar processor. The VLIW comprises a first portion and a second portion, at least the first portion comprising a vector instruction.
Abstract:
Embodiments are provided to enable concurrent uplink transmissions from multiple Wi-Fi stations (STAs) to one or more access points (APs) using Interference Alignment (IA). In an embodiment, the STAs broadcast, to one or more APs, beamforming reports including channel estimation information for downlink. The one or more AP then performs channel estimation using the beamforming reports, and selects at least some of the STAs. The AP also computes beamforming information for IA of uplink transmissions between the selected STAs and sends, to the selected STAs, the beamforming information. The beamforming information is piggy-backed over downlink data packets to the selected STAs. Each selected STA then sends an uplink data frame concurrently with one or more other uplink data frames from one or more other selected STAs to the AP. The uplink data frames are configured for concurrent uplink transmissions according to the beamforming information for IA.
Abstract:
A method of transmitting includes categorizing a transmission between the first device and a second device as one of a plurality of transmission types, and selecting an air interface from a plurality of air interface candidates in accordance with the transmission as categorized. The method also includes sending the transmission to the second device using the selected air interface.
Abstract:
In accordance with an embodiment, a network device has an input port for receiving input packets, and an output port for sending output packets, where the input packets and output packets have context layer information. The network device also includes a processor configured to process the input packets and output packets using a network protocol having a context layer.