摘要:
Reconstructing compressed data to reduce compression loss. Data at a device is compressed using lossy compression and metadata values are added to the compressed data. A gateway receives a package including the compressed data and the metadata values. The data is decompressed and input to a machine learning model along with the metadata values. The machine learning model is trained to reduce the compression loss. The output of the model is an improved decompressed data. Actions may be performed based on the improved decompressed data.
摘要:
The present disclosure includes apparatuses and methods for estimating an error rate associated with memory. A number of embodiments include sensing data stored in a memory, performing an error detection operation on the sensed data, determining a quantity of parity violations associated with the error detection operation, and estimating an error rate associated with the memory based on the determined quantity of parity violations.
摘要:
An embodiment method includes receiving, by a first user equipment (UE), a message, for a second UE, transmitted over a plurality of resource blocks (RBs) on behalf of a communications controller and determining a plurality of log-likelihood ratios (LLRs) in accordance with the received plurality of RBs. The method also includes transmitting, a subset of the determined LLRs to the second UE.
摘要:
Certain aspects of the present disclosure relate to techniques and apparatus for improving decoding latency and performance of Polar codes. An exemplary method generally includes generating a codeword by encoding information bits, using a multi-dimensional interpretation of a polar code of length N, determining, based on one or more criteria, a plurality of locations within the codeword to insert error correction codes generating the error correction codes based on corresponding portions of the information bits, inserting the error correction codes at the determined plurality of locations, and transmitting the codeword. Other aspects, embodiments, and features are also claimed and described.
摘要:
Adaptive read threshold voltage tracking techniques are provided that employ bit error rate estimation based on a non-linear syndrome weight mapping. An exemplary device comprises a controller configured to determine a bit error rate for at least one of a plurality of read threshold voltages in a memory using a non-linear mapping of a syndrome weight to the bit error rate for the at least one of the plurality of read threshold voltages.
摘要:
An FEC codeword comprises channel information indicating the reliability of the information contained by the FEC codeword. The channel information can be used to generate an initial error channel estimate. Based on the initial error channel estimate, an FEC decoder can decode the FEC codeword to increase the reliability of the information contained by the FEC codeword. According to the present disclosure, a method and system of decoding comprises: comparing a current codeword to a previous codeword in order to identify bits corrected between the previous and current codewords; revising an error channel estimate based on the identified corrected bits, the revised estimate representing a change in the error channel over time; and decoding the codeword based on the revised error channel estimate.
摘要:
A method for measuring a signal-to-noise ratio when decoding Low Density Parity Check (LDPC) codes is provided. The method includes receiving from an input of a demodulator an input code word with “strong” or “weak” solutions, decoding the input code word in a LDPC decoder using a predetermined dependence of a mean number of iterations on the signal-to-noise ratio, recording a number of iterations performed during the decoding of the input code word, averaging derived values of the number of iterations for a specified time interval, estimating a signal-to-noise ratio based on averaged derived values of the number of iterations and based on the predetermined dependence of the mean number of iterations on the signal-to-noise ratio, and generating an output decoded code word.
摘要:
A method for system for dynamic channel Log Likelihood Ratio (LLR) quantization for a Solid State Drive (SSD) controller is a targeted approach to scaling which results in a scaled, quantized set of LLRs whose relative magnitude remains undisturbed from an original magnitude. The method reads a set of voltages from each channel of the SSD. The set of reads is configured in location and number for performance. Once a set is returned, the method determines an LLR for each of the voltages read resulting in a raw set of LLRs. Targeted scaling results in a scaled set of LLRs between an upper limit and a lower limit determined for reading by a decoder. Once scaled, the LLRs are rounded and quantized for use by the decoder to produce an Error Correction Code (ECC).
摘要:
A nonvolatile memory storage controller is provided for delivering log likelihood ratios (LLRs) to a low-density parity check (LDPC) decoder for use in the decoding of an LDPC encoded codeword. The controller includes read circuitry for reading an LDPC encoded codeword stored in a nonvolatile memory storage module using a plurality of soft-decision reference voltages to provide a plurality of soft-decision bits representative of the codeword. The controller further includes a plurality of lifetime specific LLR look-up tables representative of the lifetime threshold voltage distribution of the memory storage module, wherein each of the plurality of lifetime specific LLR look-up tables comprises a plurality of LLRs representative of a specific point in the lifetime of the memory storage module for each of the plurality of soft-decision bits. The controller provides the LLRs from the appropriate LLR look-up table to an LDPC decoder for the subsequent decoding of the codeword.
摘要:
Systems and methods for decoding block and concatenated codes are provided. These include advanced iterative decoding techniques based on belief propagation algorithms, with particular advantages when applied to codes having higher density parity check matrices. Improvements are also provided for performing channel state information estimation including the use of optimum filter lengths based on channel selectivity and adaptive decision-directed channel estimation. These improvements enhance the performance of various communication systems and consumer electronics. Particular improvements are also provided for decoding HD Radio signals, including enhanced decoding of reference subcarriers based on soft-diversity combining, joint enhanced channel state information estimation, as well as iterative soft-input soft-output and list decoding of convolutional codes and Reed-Solomon codes. These and other improvements enhance the decoding of different logical channels in HD Radio systems.