摘要:
A method is provided for quickly and simply generating a three-dimensional tomographic x-ray imaging. Tomosynthetic projection images are recorded from different recording angles along a tomosynthetic scanning path and three-dimensional image data is reconstructed from the tomosynthetic projection images. The tomosynthetic projection images are recorded by a tomosynthetic x-ray device with a plurality of x-ray sources arranged on a holder at a distance from one another. Each projection image is recorded by a different x-ray source being fixed in one place during recording the tomosynthetic projection images.
摘要:
In a method for reconstructing a CT image from data acquired from an examination subject, a reconstruction algorithm is employed that is based on an ideal short-scan circle-and-line trajectory. To adapt the reconstruction algorithm to a “real world” scan trajectory, data are acquired with a C-arm CT apparatus wherein the focus is moved through an actual short-scan circle-and-line trajectory. For each position of the focus in the actual trajectory, a projection matrix is electronically generated and the reconstruction algorithm with the ideal trajectory is adapted to the actual trajectory using the projection matrices.
摘要:
Setting an x-ray emission unit includes acquiring image data with the aid of a number of image recording units. A body region to be recorded of an examination object is identified based on the image data. Position data of the body region to be recorded is established, and the x-ray emission unit is set using the position data.
摘要:
Setting an x-ray emission unit includes acquiring image data with the aid of a number of image recording units. A body region to be recorded of an examination object is identified based on the image data. Position data of the body region to be recorded is established, and the x-ray emission unit is set using the position data.
摘要:
In a method and x-ray device to determine a three-dimensional target image data set showing at least one partial region of interest of an acquisition region, wherein the image data of the three-dimensional target image data set are reconstructed from two-dimensional projection images acquired from various projection directions, first projection images are acquired without a collimation of the radiation source from first projection directions and a three-dimensional overview image data set of the acquisition region is reconstructed from the first projection images. The partial region of interest is selected in the overview image data set. Second projection images are acquired, with collimation at the partial region, from second projection directions, the second projection directions differing from the first projection directions. The target image data set showing the acquisition region and the partial region of interest is reconstructed from all first and second projection images.
摘要:
A method for acquiring a 3D image dataset is proposed. A 3D X-ray image dataset of an image object is acquired during scanning of a partial circle by X-ray radiation source and X-ray radiation detector. A first and a second 3D image datasets are calculated from the acquired image dataset. Redundancies are eliminated by averaging the first and second 3D image datasets. A filtering that is antisymmetric in respect of a center of symmetry is performed in respect of the 2D image datasets in calculating the second 3D image dataset. Said filtering has a row-by-row Hilbert transform. Suitable weights can be specified based on an axis defined in space.
摘要:
In a method and x-ray device to determine a three-dimensional target image data set showing at least one partial region of interest of an acquisition region, wherein the image data of the three-dimensional target image data set are reconstructed from two-dimensional projection images acquired from various projection directions, first projection images are acquired without a collimation of the radiation source from first projection directions and a three-dimensional overview image data set of the acquisition region is reconstructed from the first projection images. The partial region of interest is selected in the overview image data set. Second projection images are acquired, with collimation at the partial region, from second projection directions, the second projection directions differing from the first projection directions. The target image data set showing the acquisition region and the partial region of interest is reconstructed from all first and second projection images.
摘要:
A method for recording a projection dataset of a object to be recorded using a plurality of X-ray sources is provided, which X-ray sources are spaced apart from one another on average by an angle α relative to an isocenter. A plurality of projection images from different recording directions are recorded in succession while activating the corresponding X-ray sources. Two X-ray sources are activated in succession having a spacing of at least 2 α relative to the isocenter.
摘要:
A method for reconstruction of a three-dimensional image data set from projection images of an object captured with an X-ray device from different projection angles is proposed. At least one sub-area of the object is outside the coverage of the X-ray device, or as a result of strong attenuation by a metal so that no projection data is present in the sub-area. Filter lines are determined n the projection images. A first local transformation is performed along the filter lines on the projection images. The missing projection data on the transformed projection data is augmented. A non-local transformation is performed on the transformed projection data for determining of filtered, augmented projection data. The non-local transformation is different from a ramp filter which is created by the first local transformation and the non-local transformation. The three-dimensional image data set is determined by back-projection of the filtered, augmented projection data.
摘要:
An alternative analytical method for tomographic reconstruction in the 2D parallel-beam geometry is presented. This method may follow a filtering and backprojection scheme and may involve a global filtering in the projection domain and a local filtering in the image domain. For example, the method may include applying Hilbert filtering to the received projection data, computing an antiderivative of the filtered data, backprojecting the antiderivative into the image domain, and computing the 2D Laplacian of the backprojection image.