Abstract:
An illumination system for a lighting assembly comprises a light assembly configured to selectively illuminate an operating region in a surgical suite and a plurality of light sources positioned within the light assembly and configured to emit light. The system further comprises at least one imager configured to capture image data and a controller. The controller is configured to scan the image data in at least one region of interest for a shaded region and identify a location of the shaded region within the region of interest. The controller is further configured to control the light assembly to activate at least one of the light sources to emit light impinging on the shaded region within the region of interest.
Abstract:
A motorcycle comprising: a lighting system including a plurality of lamps, each of which is configured to illuminate a different region of a plurality of regions relative to the motorcycle; one or more imaging assemblies, each of which includes an image sensor configured to generate image data; and a controller in communication with each of the plurality of lamps that receives as input the image data that the image sensor from each of the one or more imaging assemblies generates, analyzes the image data, detects a vehicle from the image data, and activates whichever lamp of the plurality of lamps that illuminates the region of the plurality of regions that is closest to the vehicle to provide a visual warning to the vehicle of the motorcycle.
Abstract:
A display system for a medical suite comprises a scanning device configured to capture scanning data in the medical suite. At least one display configured to display information in an operating region of the medical suite. A controller is in communication with the scanning device and the display. The controller is configured to control the scanning device to capture identifying information of a patient. Based on the identifying information, the controller is configured to authenticate an identity of the patient. Based on the identity, the controller is configured to access a patient record for the patient. The controller is further configured to control the at least one display to display information based on the patient record.
Abstract:
A control instrument for an illumination system comprises a first end portion and a second end portion and an elongated handle interconnecting the first end portion and the second end portion. At least one marker is disposed proximate the first end portion. The at least one marker comprises a first symbol that may be detected by the illumination system to control at least one operating function of the illumination system. The illumination system is configured to selectively illuminate a location in an operating region.
Abstract:
An illumination system for a lighting assembly comprises a light assembly configured to selectively illuminate an operating region in a surgical suite and a plurality of light sources positioned within the light assembly and configured to emit light. The system further comprises at least one imager configured to capture image data and a controller. The controller is configured to scan the image data in at least one region of interest for a shaded region and identify a location of the shaded region within the region of interest. The controller is further configured to control the light assembly to activate at least one of the light sources to emit light impinging on the shaded region within the region of interest.
Abstract:
A light assembly is configured to selectively illuminate an operating region in a surgical suite. The assembly comprises a plurality of lighting modules comprising a plurality of light sources configured to emit light. The assembly further comprises at least one imager configured to capture image data disposed in at least one of the lighting modules. An articulating head assembly is configured to support each of the lighting modules. The articulating head assembly comprises a plurality of actuators configured to rotate each of the lighting modules about a first axis and a second axis. The assembly further comprises a controller. The controller is configured to scan the image data for at least one region of interest comprising at least one of a shaded region and a contaminated region.
Abstract:
A system for calculating a visibility range from a vehicle is disclosed. The system comprises a high dynamic range image sensor system comprising a pixel array including a plurality of pixels. The image sensor further includes readout circuitry in electrical communication with each pixel of the pixel array. The readout circuitry is operable to readout a distinct pixel value corresponding to one of a plurality of exposure times for each pixel in a single image frame. The system further comprises at least one processor in communication with the readout circuitry. The processor is operable to calculate a visibility range from the vehicle based on a plurality of image processing algorithms.
Abstract:
An imaging system and method for fog detection are disclosed herein. An imager is configured to image a scene external and forward of a controlled vehicle and to generate image data corresponding to the acquired images. A controller is configured to receive and analyze the image data. When exterior lights of the controlled vehicle are operated in a low beam state, the controller is able to detect light sources of interest in the image data, determine if each light source of interest is a foggy light or a clear light, and generate a first signal if a fog entry condition is satisfied.
Abstract:
An exterior light control system is provided for controlling exterior lights of a vehicle. The system includes an imaging system configured to image a forward external scene and to generate image data corresponding to the acquired images; and a controller configured to receive and analyze the image data and for generating an exterior light control signal that is used to control the exterior lights in response to analysis of the image data and in response to a selected mode of operation. When in the motorway mode, if the controller detects headlamps of one or more oncoming vehicle, the controller generates an exterior light control signal for reducing the brightness of the exterior lights, determines a relative location within the acquired images of a headlamp closest to a central feature of the acquired images, and selects a delay that varies dynamically in response to the relative location of the headlamp.
Abstract:
An exterior light control system is provided for controlling exterior lights of a vehicle. The system includes an imaging system configured to image a forward external scene and to generate image data corresponding to the acquired images; and a controller configured to receive and analyze the image data and for generating an exterior light control signal that is used to control the exterior lights in response to analysis of the image data and in response to a selected mode of operation. When in the motorway mode, if the controller detects headlamps of one or more oncoming vehicle, the controller generates an exterior light control signal for reducing the brightness of the exterior lights, determines a relative location within the acquired images of a headlamp closest to a central feature of the acquired images, and selects a delay that varies dynamically in response to the relative location of the headlamp.