Abstract:
A transmission is provided having an input member, an output member, at least four planetary gear sets, a plurality of coupling members and a plurality of torque transmitting devices. Each of the planetary gear sets includes first, second and third members. The torque transmitting devices include clutches and a brake actuatable in combinations of four to establish a plurality of forward gear ratios and at least one reverse gear ratio.
Abstract:
A flexible binary pump system for a motor vehicle transmission includes a shaft, a first vane pump mounted on the shaft and having a first rotor with a first diameter and a first width and a second vane pump mounted on the shaft and having a second rotor with a second diameter and a second width. The first vane pump provides hydraulic fluid to the transmission at a first pressure, and the second vane pump provides hydraulic fluid to the transmission at a second pressure. The first diameter, first width, second diameter, and second width are selected to optimize power consumption of the binary pump system and hydraulic fluid budget for the transmission.
Abstract:
A transmission is provided having an input member, an output member, four planetary gear sets, a plurality of coupling members and a plurality of torque transmitting devices. Each of the planetary gear sets includes first, second and third members. The torque transmitting devices include clutches and brakes actuatable in combinations of two to establish a plurality of forward gear ratios and one reverse gear ratio. One of the torque transmitting devices includes a friction clutch disposed in parallel with a binary clutch.
Abstract:
A flexible binary pump system for a motor vehicle transmission includes a shaft, a first vane pump mounted on the shaft and having a first rotor with a first diameter and a first width and a second vane pump mounted on the shaft and having a second rotor with a second diameter and a second width. The first vane pump provides hydraulic fluid to the transmission at a first pressure, and the second vane pump provides hydraulic fluid to the transmission at a second pressure. The first diameter, first width, second diameter, and second width are selected to optimize power consumption of the binary pump system and hydraulic fluid budget for the transmission.
Abstract:
A continuously variable transmission for a motor vehicle includes an input member, an output member, a first planetary gear set having first, second, and third members, wherein the first member is interconnected with the input member, a brake connected to the second member of the first planetary gear set, a clutch interconnected between one of the first member, second member, and third member of the first planetary gear set and another one of the first member, second member, and third member of the first planetary gear set, a belt and pulley assembly connected to the third member of the first planetary gear set and the output member, a chain drive interconnected to the output member, and a final drive unit interconnected to the chain drive.
Abstract:
A transmission is provided having a housing, a plurality of planetary gear sets, a structural member, a sprocket member, a first dog clutch member, a second dog clutch member, and a biasing member. The structural member is secured to the housing and includes a plurality of splines and defines a cavity. The sprocket member is rotationally supported by the structural member. The first dog clutch member is disposed in the cavity of the structural member and includes splines and dogteeth. The splines are engaged with the splines of the structural member. The second dog clutch member includes dogteeth that are aligned with the dogteeth of the first dog clutch member. The biasing member is disposed between the structural member and the first dog clutch member.
Abstract:
A transmission assembly for use in a motor vehicle is provided. The transmission assembly has a case for housing components of the transmission and an electromechanical device operable to convert mechanical energy to electrical energy. The electromechanical device is disposed within the transmission case. The case may have a main housing portion and a bell housing portion, with the electromechanical device housed in the main housing portion, in some variations. A transmission shaft may be rotatably supported within the case and configured to be connected to an engine of the motor vehicle. A connecting device may continuously interconnect the electromechanical device with the transmission shaft.
Abstract:
An automatic transmission includes a plurality of planetary gear assemblies, an integrated starter, a remote mounted hydraulic pump and a common drive system. An input shaft of the automatic transmission is coupled to and drives a ring (spur) gear. In one portion of the automatic transmission, a starter motor is disposed and includes gear teeth on an output shaft that engage a pinion gear that, in turn, engages the input shaft ring gear. In another portion of the automatic transmission, preferably the lower portion, an off axis hydraulic pump includes a drive shaft and driven gear which also engages the input shaft ring gear.
Abstract:
A transmission is provided having an input member, an output member, four planetary gear sets, a plurality of coupling members and a plurality of torque transmitting devices. Each of the planetary gear sets includes first, second and third members. The torque transmitting devices include clutches and brakes actuatable in combinations of two to establish a plurality of forward gear ratios and one reverse gear ratio. One of the torque transmitting devices includes a friction clutch and a binary clutch which have a spring-ball structure disposed therebetween.
Abstract:
A powertrain includes an engine, electric motor, disconnect clutch and a transmission. The transmission has an input member, an output member, at least four planetary gear sets, a plurality of coupling members and a plurality of torque transmitting devices. Each of the planetary gear sets includes first, second and third members. The torque transmitting devices include clutches and brakes actuatable in combinations of three to establish a plurality of forward gear ratios and at least one reverse gear ratio. The electric motor is connected to the input of the transmission and the engine is selectively connected to the input member through the disconnect clutch. A controller is configured to control the operation of the powertrain.