Abstract:
Multiple cameras are arranged in an array at a pitch, roll, and yaw that allow the cameras to have adjacent fields of view such that each camera is pointed inward relative to the array. The read window of an image sensor of each camera in a multi-camera array can be adjusted to minimize the overlap between adjacent fields of view, to maximize the correlation within the overlapping portions of the fields of view, and to correct for manufacturing and assembly tolerances. Images from cameras in a multi-camera array with adjacent fields of view can be manipulated using low-power warping and cropping techniques, and can be taped together to form a final image.
Abstract:
A camera system includes a wireless indicator that emits light to provide signals to a user. This wireless indicator is attached to a lens casing that covers the front face of the camera to protect components of the camera such as the lens. A wireless signal interface on the front face of the camera is configured to emit ultraviolet light in response to control circuitry within the camera. The ultraviolet light is transmitted through the lens casing to an excitable element. The excitable element produces visible light in response to the ultraviolet light. Any re-emitted visible light that travels back towards the camera lens and image sensor is reflected by a reflective layer, which is configured to transmit ultraviolet light while reflecting visible light. Therefore, the wireless indicator does not cause light artifacts or image flaws to appear in images captured by the image sensor.
Abstract:
An image sensor compresses image data prior to transmitting the image data to a DSP. The image sensor captures light representing an image, for instance via a camera's aperture. A focal plane array converts the captured light into pixel data. The pixel data is sorted into categories, and is compressed in parallel by a compression engine. The compressed pixel data is then sent to a DSP, which may be located off-chip. The DSP then decompresses the compressed pixel data, performs image signal processing operations on the compressed pixel data, and then compresses the processed pixel data into a digital image format. The image sensor may buffer the pixel data for one or more images to accommodate for slowdown by the compression engine. The pixel data may be sorted by row and column of a pixel array. Alternatively, the pixel data may be sorted by color from a Bayer color filter.
Abstract:
A camera mounting assembly is configured to couple to a camera housing. The camera mounting assembly includes a plurality of indentations configured to allow for the passage of light through the indentations and upon the image sensor of a camera enclosed by the camera housing. The camera mounting assembly can further include recessed channels within an inner-front surface of the camera mounting assembly configured to further allow for the passage of light through the indentations, through the recessed channels, and upon the image sensor.
Abstract:
A camera system includes a wireless indicator that emits light to provide signals to a user. This wireless indicator is attached to a lens casing that covers the front face of the camera to protect components of the camera such as the lens. A wireless signal interface on the front face of the camera is configured to emit ultraviolet light in response to control circuitry within the camera. The ultraviolet light is transmitted through the lens casing to an excitable element. The excitable element produces visible light in response to the ultraviolet light. Any re-emitted visible light that travels back towards the camera lens and image sensor is reflected by a reflective layer, which is configured to transmit ultraviolet light while reflecting visible light. Therefore, the wireless indicator does not cause light artifacts or image flaws to appear in images captured by the image sensor.
Abstract:
A camera system captures an image in a source aspect ratio and applies a transformation to the input image to scale and warp the input image to generate an output image having a target aspect ratio different than the source aspect ratio. The output image has the same field of view as the input image, maintains image resolution, and limits distortion to levels that do not substantially affect the viewing experience. In one embodiment, the output image is non-linearly warped relative to the input image such that a distortion in the output image relative to the input image is greater in a corner region of the output image than a center region of the output image.
Abstract:
An integrated image sensor and lens assembly is disclosed that includes: an image sensor assembly defining an optical axis; a lens holder; and a lens barrel. The lens holder is coupled to the image sensor assembly and includes a tubular body portion terminating in a tapered surface that extends at an angle to the optical axis. The lens barrel is coupled to the lens holder by an adhesive that is applied between the lens holder and the lens barrel such that the adhesive extends in non-perpendicular relation to the optical axis.
Abstract:
A camera system includes a camera and an underwater housing. The underwater housing, when submerged underwater, causes refraction of light entering the camera, thereby affecting focus. The camera includes a lens assembly adjustable between a first secured position at a first distance from an image sensor to enable the camera to capture images that are in focus when the camera is outside of water. The lens assembly is adjustable to a second secured position at a second distance from the image sensor to enable the camera to capture images that are in focus when the camera operates within the underwater housing and submerged under water.
Abstract:
A camera system captures an image in a source aspect ratio and applies a transformation to the input image to scale and warp the input image to generate an output image having a target aspect ratio different than the source aspect ratio. The output image has the same field of view as the input image, maintains image resolution, and limits distortion to levels that do not substantially affect the viewing experience. In one embodiment, the output image is non-linearly warped relative to the input image such that a distortion in the output image relative to the input image is greater in a corner region of the output image than a center region of the output image.
Abstract:
Multiple cameras are arranged in an array at a pitch, roll, and yaw that allow the cameras to have adjacent fields of view such that each camera is pointed inward relative to the array. The read window of an image sensor of each camera in a multi-camera array can be adjusted to minimize the overlap between adjacent fields of view, to maximize the correlation within the overlapping portions of the fields of view, and to correct for manufacturing and assembly tolerances. Images from cameras in a multi-camera array with adjacent fields of view can be manipulated using low-power warping and cropping techniques, and can be taped together to form a final image.