-
公开(公告)号:US20250053714A1
公开(公告)日:2025-02-13
申请号:US18805439
申请日:2024-08-14
Applicant: Google LLC
Inventor: Chian-min Richard Ho , William Hang , Mustafa Nazim Yazgan , Anna Darling Goldie , Jeffrey Adgate Dean , Azalia Mirhoseini , Emre Tuncer , Ya Wang , Anand Babu
IPC: G06F30/27 , G06F30/392
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip floorplan. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip floorplan, comprising placing a respective node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the node to be placed at the time step to a position from the plurality of positions using the score distribution.
-
公开(公告)号:US20240403660A1
公开(公告)日:2024-12-05
申请号:US18697182
申请日:2022-10-06
Applicant: Google LLC
Inventor: Xinfeng Xie , Azalia Mirhoseini , James Laudon , Phitchaya Mangpo Phothilimthana , Sudip Roy , Prakash Janardhana Prabhu , Ulysse Beaugnon , Yanqi Zhou
Abstract: Systems and methods for determining a placement for computational graph across multiple hardware devices. One of the methods includes generating a policy output using a policy neural network and using the policy output to generate a final placement that satisfies one or more constraints.
-
公开(公告)号:US20240249058A1
公开(公告)日:2024-07-25
申请号:US18395251
申请日:2023-12-22
Applicant: Google LLC
Inventor: Anna Darling Goldie , Azalia Mirhoseini , Ebrahim Songhori , Wenjie Jiang , Shen Wang , Roger David Carpenter , Young-Joon Lee , Mustafa Nazim Yazgan , Chian-min Richard Ho , Quoc V. Le , James Laudon , Jeffrey Adgate Dean , Kavya Srinivasa Setty , Omkar Pathak
IPC: G06F30/392 , G06F30/398 , G06N3/08
CPC classification number: G06F30/392 , G06F30/398 , G06N3/08
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.
-
34.
公开(公告)号:US20230162010A1
公开(公告)日:2023-05-25
申请号:US17532572
申请日:2021-11-22
Applicant: Google LLC
Inventor: Azalia Mirhoseini , Safeen Huda , Martin Christoph Maas , Paras Jagdish Jain , Jeffrey Adgate Dean
CPC classification number: G06N3/063 , G06F15/8046 , G06F11/3409 , G06F11/3062 , G06F11/3024
Abstract: Systems and methods are provided for designing approximate, low-power deep learning accelerator chips that have little to no accuracy loss when executing a deep learning model. A set of approximate systolic arrays may be generated. The performance of each approximate systolic array in the set of approximate systolic arrays processing a deep neural network (DNN) may be determined. Each layer in the DNN may be mapped to an approximate systolic array in the set of approximate systolic arrays. A subset of the set of approximate systolic arrays may be selected for inclusion in the inference chip design based on the mapping and the performance of each approximate systolic array in the set of approximate systolic arrays.
-
公开(公告)号:US20230117786A1
公开(公告)日:2023-04-20
申请号:US18082392
申请日:2022-12-15
Applicant: Google LLC
Inventor: Anna Darling Goldie , Azalia Mirhoseini , Ebrahim Songhori , Wenjie Jiang , Shen Wang , Roger David Carpenter , Young-Joon Lee , Mustafa Nazim Yazgan , Chian-min Richard Ho , Quoc V. Le , James Laudon , Jeffrey Adgate Dean , Kavya Srinivasa Setty , Omkar Pathak
IPC: G06F30/392 , G06F30/398 , G06N3/08
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.
-
公开(公告)号:US20220383036A1
公开(公告)日:2022-12-01
申请号:US17764015
申请日:2020-09-25
Applicant: Google LLC
Inventor: Azade Nazi , Azalia Mirhoseini , Anna Darling Goldie , Sujith Ravi , William Hang
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a clustering neural network. One of the methods includes obtaining unlabeled training data; and training the clustering neural network on the unlabeled training data to determine trained values of the clustering parameters by minimizing a normalized cuts loss function that includes a first term that measures an expected normalized cuts of clustering nodes in a graph representing the data set into the plurality of clusters according to clustering outputs generated by the clustering neural network.
-
公开(公告)号:US11455514B2
公开(公告)日:2022-09-27
申请号:US16554217
申请日:2019-08-28
Applicant: Google LLC
Inventor: Benoit Steiner , Anna Darling Goldie , Jeffrey Adgate Dean , Hieu Hy Pham , Azalia Mirhoseini , Quoc V. Le
Abstract: A method for determining a placement for machine learning model operations across multiple hardware devices includes receiving data specifying machine learning operations, and determining a placement that assigns each of the operations specified by the data to a respective device from the multiple hardware devices. Determining the placement includes: generating, from the data, a respective operation embedding for each of the operations; grouping the operations into multiple operation groups, comprising processing each of the respective operation embeddings using a grouper neural network having multiple grouper parameters, in which the grouper neural network is configured to, for each of the operations, process the operation embedding for the operation in accordance with first values of the grouper parameters to generate a grouper output that assigns the operation to an operation group from the multiple operation groups; and assigning each of the operation groups to a respective device from the multiple hardware devices.
-
公开(公告)号:US11216609B2
公开(公告)日:2022-01-04
申请号:US17238128
申请日:2021-04-22
Applicant: Google LLC
Inventor: Anna Darling Goldie , Azalia Mirhoseini , Ebrahim Songhori , Wenjie Jiang , Shen Wang , Roger David Carpenter , Young-Joon Lee , Mustafa Nazim Yazgan , Chian-Min Richard Ho , Quoc V. Le , James Laudon , Jeffrey Adgate Dean , Kavya Srinivasa Setty , Omkar Pathak
IPC: G06F30/392 , G06N3/08 , G06F30/398
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.
-
公开(公告)号:US20200279150A1
公开(公告)日:2020-09-03
申请号:US16879187
申请日:2020-05-20
Applicant: Google LLC
Inventor: Noam M. Shazeer , Azalia Mirhoseini , Krzysztof Stanislaw Maziarz
Abstract: A system includes a neural network that includes a Mixture of Experts (MoE) subnetwork between a first neural network layer and a second neural network layer. The MoE subnetwork includes multiple expert neural networks. Each expert neural network is configured to process a first layer output generated by the first neural network layer to generate a respective expert output. The MoE subnetwork further includes a gating subsystem that selects, based on the first layer output, one or more of the expert neural networks and determine a respective weight for each selected expert neural network, provides the first layer output as input to each of the selected expert neural networks, combines the expert outputs generated by the selected expert neural networks in accordance with the weights for the selected expert neural networks to generate an MoE output, and provides the MoE output as input to the second neural network layer.
-
公开(公告)号:US10719761B2
公开(公告)日:2020-07-21
申请号:US16393063
申请日:2019-04-24
Applicant: Google LLC
Inventor: Noam M. Shazeer , Azalia Mirhoseini , Krzysztof Stanislaw Maziarz
Abstract: A system includes a neural network that includes a Mixture of Experts (MoE) subnetwork between a first neural network layer and a second neural network layer. The MoE subnetwork includes multiple expert neural networks. Each expert neural network is configured to process a first layer output generated by the first neural network layer to generate a respective expert output. The MoE subnetwork further includes a gating subsystem that selects, based on the first layer output, one or more of the expert neural networks and determine a respective weight for each selected expert neural network, provides the first layer output as input to each of the selected expert neural networks, combines the expert outputs generated by the selected expert neural networks in accordance with the weights for the selected expert neural networks to generate an MoE output, and provides the MoE output as input to the second neural network layer.
-
-
-
-
-
-
-
-
-