Abstract:
A network device polar encodes data to obtain a first encoded bit sequence, wherein the first encoded bit sequence comprises: bits in even number locations in the first encoded bit sequence and bits in odd number locations in the first encoded bit sequence; then the device interleaves the first encoded bit sequence to obtain an interleaved bit sequence; finally, the device rate matches the interleaved bit sequence and outputs the bit sequence after rate matched, wherein bits in even number locations of the interleaved bit sequence are from the bits in even number locations of the first encoded bit sequence, bits in odd number locations of the interleaved bit sequence are from the bits in odd number locations of the first encoded bit sequence.
Abstract:
Embodiments of the present invention provide a polar code rate matching method and a polar code rate matching apparatus. The method includes: performing matrix-based BRO interleaving on a non-systematic polar code output by a polar code encoder, to obtain interleaved bits; and determining, based on the interleaved bits, a rate-matched output sequence. According to the embodiments of the present invention, matrix-based BRO interleaving is performed on a non-systematic polar code, to obtain a rate-matched output sequence, so that a sequence structure after interleaving is more random, which can reduce an FER, thereby improving HARQ performance and ensuring reliability of data transmission.
Abstract:
A feature configuration apparatus including an indication configured to send a first reservation indication of a configuration information element to user equipment (UE), where the first reservation indication instructs the UE to reserve the configuration information element saved in a first radio resource control connection state, and an enable unit configured to, when the UE reenters the first radio resource control connection state, send a first enable indication of the configuration information element to the UE, where the first enable indication is used to instruct the UE to use the configuration information element to perform feature configuration.
Abstract:
Embodiments of the present invention disclose a data transmission method and a terminal. The method includes: detecting, by a terminal in an idle state, whether a logical channel of a first path includes first to-be-transmitted data, and whether a logical channel of a second path includes second to-be-transmitted data; and if it is detected that the logical channel of the first path does not include the first to-be-transmitted data and a length of the second to-be-transmitted data is less than a preset second path transmission data threshold, selecting the second path to transmit the second to-be-transmitted data, where the second to-be-transmitted data includes discontinuously transmitted application data whose length is less than a preset threshold.
Abstract:
The present invention discloses a method, a device, and a system for synchronizing a physical layer state, and belongs to the field of communications technologies. The present invention realizes synchronization of the physical layer state of the first feature at the network side and the terminal after the terminal updates the RRC layer configuration corresponding to the first feature.
Abstract:
Embodiments of the present invention disclose a resource allocation method, a radio network controller, and a base station. The method includes: generating resource instruction information according to capability information of the maximum number of a monitored HS-SCCH of a terminal configured in an HSDPA multiflow transmission mode, and sending the resource instruction information to abase station; receiving resource allocation information returned by the base station, where the resource allocation information includes the number of HS-SCCH channels allocated by the base station for the terminal in a serving cell corresponding to the base station, and the number of HS-SCCH channels allocated for the terminal in the serving cell corresponding to the base station is smaller than or equal to the maximum number of a monitored HS-SCCH of the terminal configured in the HSDPA multiflow transmission mode.
Abstract:
This application provides a communication method, an apparatus, a device, and a storage medium. The method includes: A first device generates a first orthogonal frequency division multiplexing (OFDM) time domain signal, which occupies one subcarrier in frequency domain and is used by a second device to perform backscatter communication. The first device sends the first OFDM time domain signal to the second device. The first OFDM time domain signal occupies one subcarrier in frequency domain, such that power is concentrated on the subcarrier. When the second device performs backscatter communication based on the first OFDM time domain signal, reliability of backscatter data is improved.
Abstract:
A clock synchronization apparatus, an optical transmitter, an optical receiver, and a clock synchronization method are provided. In the clock synchronization apparatus, a digital interpolator adjusts a sampling clock frequency of a digital signal under sampling clock control of a clock control circuit.
Abstract:
The present disclosure provides an encoding and decoding device implementing an improved forward error correction (FEC) coding/decoding method. In particular, the encoding device is configured to encode a stream of data symbols using a spatially coupled code (e.g. staircase codes, braided block codes or continuously interleaved block codes), wherein at least one generalized error location (GEL) code is used as a component code of the spatially coupled code. Accordingly, the decoding device is configured to decode a sequence of encoded symbol blocks using a spatially coupled code, wherein at least one GEL code is used as a component code of the spatially coupled code. Thereby, a suitable spatially coupled FEC code that allows for very low-latency, high-throughput, high-rate applications with a low-complexity decoding procedure, and allows for mitigation of the error-floor, is designed.
Abstract:
The present disclosure relates to data transmission methods, network devices. One example data transmission method includes: a first network node sends a first indication information to a second network node, the first indication information includes information about an uplink data volume of a buffer of a terminal device, or the first indication information indicates a relationship between an uplink data volume of a buffer of a terminal device and a predefined data volume threshold.