Abstract:
This application provides a communication method and a communications apparatus, where the communication method includes: receiving, by a terminal device, downlink control information, where the downlink control information is used to indicate the terminal device to receive or send a first channel on a first resource; receiving, by the terminal device, first indication information, where the first indication information is used to indicate a second resource; when the first resource and the second resource overlap in time domain, receiving or sending, by the terminal device, the first channel on a third resource, where the third resource and the second resource do not overlap in time domain.
Abstract:
A video recording method includes a first electronic device that records a first shot image in response to a first operation of a user on a preview interface of an application, and records audio corresponding to the first shot image at a first volume. The first electronic device captures a second shot image and audio corresponding to the second shot image in response to a zoom-in operation of the user on the first shot image. The first shot image and the second shot image are consecutive. The first electronic device records the second shot image, and records the audio corresponding to the second shot image at a second volume.
Abstract:
Embodiments of this application provide a communication method, device, and system. When a resource is reserved, a conflict between a reference signal of a terminal device and data transmission of another terminal device can be avoided, and impact on channel estimation performance of the terminal device can be avoided. In an embodiment, a network device determines resource configuration information, and sends the resource configuration information to the terminal device. The terminal device receives the resource configuration information, and determines, based on the resource configuration information, a symbol that corresponds to a first resource and that is in a first time unit. The symbol corresponding to the first resource does not include a symbol on which a reference signal is located and that is in the first time unit, and the first resource is not used for data transmission corresponding to the terminal device.
Abstract:
An example audio play circuit includes a power supply module, a power amplifier, a coupling capacitor, a load, and a plosive suppression circuit. An output terminal of the power amplifier is connected to a first terminal of the coupling capacitor and an output terminal of the plosive suppression circuit, a second terminal of the coupling capacitor is connected to the load, and an output terminal of the power supply module is connected to a power supply terminal of the power amplifier and a power supply terminal of the plosive suppression circuit. The power supply module is configured to provide a direct current power supply voltage for the power amplifier and the plosive suppression circuit. When the direct current power supply voltage rises to the first voltage threshold, the plosive suppression circuit connects the first terminal of the coupling capacitor to the ground terminal.
Abstract:
A data transmission method, device, and system are provided. The method includes: sending, by a base station, an NPSS to UE by using a first subframe in a first radio frame and a first subframe in a second radio frame, where the first radio frame and the second radio frame are consecutive, and both the first radio frame and the second radio frame use a TDD uplink-downlink subframe configuration; sending, by the base station, an NPBCH to the UE by using a second subframe in the first radio frame and a second subframe in the second radio frame; sending, by the base station, an NSSS to the UE by using a third subframe in the first radio frame; and sending, by the base station, a SIB1-NB to the UE by using a third subframe in the second radio frame.
Abstract:
The present invention provides a method and an apparatus for detecting a code change. The method includes adding a tag to a function to be changed in a source code, and compiling the source code to acquire, according to the tag, position information and relocation information of the function to be changed in the compiled source code. In embodiments of the present invention, a tag is added to a function to be changed, a source code is compiled into a binary file, and position information and relocation information of the function to be changed in the binary file are acquired by using the tag, so that in subsequent operations, a hot patch file modifies, according to the position information and the relocation information, the function to be changed in software.
Abstract:
An apparatus for signal bandwidth compensation is disclosed. The apparatus includes: a digital predistortion filtering unit, a compensation filter, a conversion unit, and a power amplifier; where the digital predistortion filtering unit receives an original signal, performs predistortion processing on the original signal; the compensation filter receives the predistortion signal, compensates for distortion caused during a process of transmitting the predistortion signal to the power amplifier, and outputs a compensated predistortion signal to the conversion unit; the conversion unit receives the compensated predistortion signal, converts the compensated predistortion signal into an analog signal, performs frequency mixing processing, and outputs a predistortion signal experiencing the frequency mixing to the power amplifier; the power amplifier receives the predistortion signal experiencing the frequency mixing, amplifies the predistortion signal experiencing the frequency mixing, and outputs an amplified signal.
Abstract:
A data stream transmission method includes: sending a first target signal; obtaining a first moment, where the first moment is obtained based on a time point at which a first receiving device on a second device receives the first target signal; obtaining a second moment, where the second moment is obtained based on a time point at which a second receiving device on the second device receives the first target signal, where the first receiving device and the second receiving device are located at different positions of the second device, and the second device is a head-mounted device; and when determining, based on the first moment and the second moment, that a data transmission condition is met, transmitting a target data stream to the second device.
Abstract:
A data transmission method, a base station, and user equipment are provided. The method includes: receiving, by a base station, a random access request sent by user equipment, where the random access request carries indication information to request uplink scheduling information; and sending, by the base station, a random access response to the user equipment, where the random access response carries first uplink scheduling information or second uplink scheduling information, the first uplink scheduling information indicates that a message Msg 3 uses a first transport block, the second uplink scheduling information indicates that the Msg 3 uses a second transport block, the first transport block is larger than the second transport block, the first transport block can be used to transmit signaling and user data, and the second transport block can be used to transmit the signaling, but is not used to transmit the user data.
Abstract:
This application discloses a data transmission method which includes: receiving DCI, wherein two TBs or one TB can be scheduled in the DCI, the DCI comprises a third bit, the third bit indicates that a quantity of the TB(s) scheduled in the DCI is 1 or 2, and the DCI further comprises a first bit and/or a second bit; and when the quantity of the TB(s) is 1, performing, based on the third bit, and the first bit or second bit, uplink or downlink data transmission, wherein the first or second bit indicates a NDI associated with the TB scheduled in the DCI; or when the quantity of the TB(s) is 2, performing, based on the third, first bit, and second bit, uplink or downlink data transmission, wherein the first and the second bit respectively indicate two NDIs associated with the two TBs.